new cataly c routes to access
play

New Cataly*c Routes to Access Polymer Materials from CO 2 Dr - PowerPoint PPT Presentation

New Cataly*c Routes to Access Polymer Materials from CO 2 Dr Jennifer A. Garden Chris*na Miller Research Fellow 22 nd of February 2017 1 Polyme mers from m CO 2 2 Polycarbonate material applica*ons: Binders Packaging Coa,ngs 2 Polyme


  1. New Cataly*c Routes to Access Polymer Materials from CO 2 Dr Jennifer A. Garden Chris*na Miller Research Fellow 22 nd of February 2017 1

  2. Polyme mers from m CO 2 2 Polycarbonate material applica*ons: Binders Packaging Coa,ngs 2

  3. Polyme mers from m CO 2 2 Polyurethane material applica*ons: Footwear Automo,ve Construc,on Furniture Appliances 3

  4. Polyme mers from m CO 2 2 Conversion of waste CO 2 Life cycle analysis - energy reduc*on 20% CO 2 = 11 – 19% greenhouse gas reduc,on Williams et al, ACS Catal ., 2015 , 5 , 1581; von der Assen, Bardow, Green Chem ., 2014 , 16 , 3272 4

  5. Catalyst Developme ment salens β -diiminates macrocycles D. J. Darensbourg, Acc. Chem. Res. , 2004, 37 , 836–844; Chem. Rev. , 2007, 107 , 2388 C. K. Williams, J. Am. Chem. Soc., 2012 , 134 , 15676; G. W. Coates, Angew. Chem. Int. Chem. Sci. , 2012 , 3 , 1245; Ed. , 2002 , 41 , 2599; Rieger, PCT Int. Appl., 2013 , Chem. Commun. , 2014 , 51 , 4579 WO 2013034750 5

  6. Catalyst Developme ment macrocycles ANrac*ve Catalysts: Ac,ve at 1 bar CO 2 pressure • No co-catalyst needed • Robust (air, unpurified CHO) • Alterna,ng copolymer (˃99 % carbonate linkages) • Good copolymer selec,vity (˂5 % cyclic carbonate) • Low M n PCHC • C. K. Williams et al., JACS, 2012 2012, 134, 15676; Angew. Chem. Int. Ed ., 2009, 48 48, 931; Macromolecules, 2010 2010, 43, 2291; Chem. Commun., 2011 2011, 47, 212; WO 2013034750; WO 2009130470 6

  7. Mec MechanisKc hanisKc Under Understanding anding rate = k p [CHO][catalyst][CO 2 ] 0 Target 7 C. K. Williams, Macromolecules , 2010 , 43 , 2291; J. Am. Chem. Soc. , 2011 , 133 , 17395

  8. Ca Catalyst S Syn ynthes esis Synthe*c challenge: • Symmetrical ligand • Labile metals of similar proper,es • Successfully synthesised heterodinuclear catalyst • Homodinuclear analogues prepared J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc. , 2015 , 137 , 15078; 8 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  9. Ca Catalyst An Analysis J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc., 2015 , 137 , 15078; 9 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  10. Ca Catalyst An Analysis J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc., 2015 , 137 , 15078; 10 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  11. CO CO 2 /CHO Copolyme merisaKons Heterodinuclear catalyst: • 5 x faster than 1:1 ratio of homodinuclear • 2 x faster than homodinuclear Mg catalyst • Zn analogue - completely inactive X = TON 11

  12. CO 2 /CHO Copolyme CO merisaKons 12 Catalyst TON TOF (h -1 ) CO 2 (%) M n [Ð] MgZn 344 34 >99 3100 [1.14] 1:1 Mg 2 :Zn 2 72 7 >99 < 500 Mg 2 151 15 >99 840 [1.13] Zn 2 0 0 0 - Reac,on condi,ons: 10 h, 80 o C, cat. loading 0.1 mol% vs CHO, 1 bar 12

  13. CO 2 /CHO Copolyme CO merisaKons 13 Catalyst TON TOF (h -1 ) CO 2 (%) M n [Ð] MgZn* 3118 624 >99 18090 [1.05], 7270 [1.10] 1:1 Mg 2 :Zn 2 72 7 >99 < 500 Mg 2 151 15 >99 840 [1.13] Zn 2 0 0 0 - *Reac,on condi,ons: 5 h, 120 o C, cat. loading 0.01 mol% vs CHO, 50 bar TOF = 21 h -1 TOF = 210 h -1 Nozaki et al., Sugimoto, Kuroda, Macromolecules, Macromolecules, 2009 , 42 , 6972 2008 , 41 , 312 TOF = 1300 h -1 TOF = 107 h -1 Darensbourg et al., Williams et al., Inorg. Chem., Chem. Commun., 2007 , 46 , 5474 2011 , 47 , 212 13

  14. PA/CHO Copolyme merisaKons 14 40 x reac*vity enhancement 1:1 ra,o of Mg 2 :Zn 2 + 14

  15. Titanium m systems ms Titanium – akrac,ve metal for catalysis • Abundant • Inexpensive • Non-toxic High ac,vity catalysts for olefin polymerisa,on T. J. Marks, J. Am. Chem. Soc. , 2013 , 135 , 8830; J. Am. Chem. Soc. , 2014 , 136 , 10460 Recently applied to CO 2 /epoxide copolymerisa,on K. Nozaki, J. Am. Chem. Soc. , 2011 , 133 , 10720 15

  16. Heterome metallic Titanium m Catalysts • Ac,ve at 1 bar CO 2 pressure • No co-catalyst required • α-propoxide, ω-hydroxide end-capped polymers 60 Conversion (%) 50 40 homometallic 30 analogues are inac*ve 20 10 0 Ti Zn TiZn 16 J. A. Garden, A. J. P. White, C. K. Williams, Dalton Trans ., 2017 , DOI: 10.1039/C6DT04193K

  17. Con Concl clusion ons Development of new heterobimetallic catalysts • High ac,vity and selec,vity • Successful within CO 2 /epoxide copolymerisa,on • Outperform homometallic analogues • 17

  18. Acknowledgeme ments Funding Academics and Colleagues Prof. Charloke Williams • Dr Andrew J. P. White • Dr Charles Romain • Dr Prabhjot Saini • All Williams group members • Collaborators Thank you for listening! 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend