new asymmetric gravity capillary and flexural waves
play

New asymmetric gravity-capillary and flexural waves Jean-Marc - PDF document

New asymmetric gravity-capillary and flexural waves Jean-Marc Vanden-Broeck University College London ICERM , April 2017 COWORKERS Zhan Wang Tao Gao Paul Milewski Emilian Parau Olga Trichtchenko 1 2 3 4 5 6 inviscid,


  1. New asymmetric gravity-capillary and flexural waves Jean-Marc Vanden-Broeck University College London ICERM , April 2017

  2. COWORKERS Zhan Wang Tao Gao Paul Milewski Emilian Parau Olga Trichtchenko 1

  3. 2

  4. 3

  5. 4

  6. 5

  7. 6

  8. • inviscid, incompressible, irrotational • gravity • surface tension • steady 7

  9. NON SYMMETRIC WAVES....in two and three dimensions • Periodic waves • Solitary waves • Generalised Solitary waves flexural waves (thursday.....Olga....). stability 8

  10. PART 1 TWO-DIMENSIONAL FLOWS 9

  11. FORMULATION GRAVITY-CAPILLARY WAVES φ xx + φ yy = 0 φ y = φ x ζ x on y = ζ ( x ) 1 y ) + gy − T 2( φ 2 x + φ 2 ρ κ = B on y = ζ ( x ) φ y = 0 on y = − h FLEXURAL WAVES D s κ + 1 ρ ( ∂ 2 2 κ 3 ) T = surface tension , D = flexural rigidity ζ xx κ = x ) 3 / 2 (1 + ζ 2 10

  12. PERIODIC and SOLITARY waves Gravity waves ental educational concepts of linear and non-linear ions of nonlinear equations from the book High-Temperature he Nonlinear Mechanism and Tunneling Measurements (Klu s, Dordrecht, 2002, pages 101-142) is given. There are a few tons. For example, there are topological and ons. Independently of the topological nature of solitons, Craig W. and Sternberg P. (1988) 11

  13. Gravity-capillary solitary waves ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� 12

  14. NUMERICAL METHODS boundary integral equation methods, series trun- cation methods or ANY OTHER METHODS.... 1. Iterations by using Newton’s method 2. Continuation methods 3. INITIAL GUESS: bifurcations, symmetry breaking... 13

  15. ρg ) 1 / 2 (reference length), Dimensioless variables: ( T ρg 3 ) 1 / 2 (reference time) ( T amplitude: A phase velocity: c energy: E � η � ∞ � ∞ E = 1 y ) dydx + 1 −∞ ( φ 2 x + φ 2 −∞ η 2 dx 2 2 −∞ � ∞ � 1 + η 2 + −∞ ( x − 1) dx Boundary integral equation, Newton iterations, continuation 14

  16. Gravity capillary solitary waves infinite depth ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� 15

  17. (a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed 16

  18. (c) 6 5 4 Energy 3 2 1 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 Speed

  19. (a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed Zufiria (1987), Buffoni, Champneys and Toland (1996), Yang and Akylas (1997), Champneys and Groves (1997)....... 17

  20. 1.4 (a) 0.66 C � 1.3 0.62 � D 1.2 � A 0.58 � B 1.1 0.54 1 Energy 0.5 0.9 1.405 1.4065 1.408 0.8 0.7 C � � B A 0.6 1.37875 1.37879 D � � 0.5 1.38 1.385 1.39 1.395 1.4 1.405 1.41 Speed 18

  21. 1.4 (a) 0.65 � 3 1.3 � 4 � 1 0.6 1.2 � 5 � 2 � 6 1.1 0.55 1 0.5 1.405 1.406 1.407 1.408 1.409 0.9 0.8 � 5 0.7 � 3 � � 2 1 6 0.6 � 4 � 0.5 1.3787 1.3788 1.3845 1.3855 0.4 1.375 1.38 1.385 1.39 1.395 1.4 1.405 1.41 (b) (c) 0.15 0.15 0.1 0.1 0.05 0.05 0 0 − 0.05 − 0.05 − 0.1 − 0.1 − 0.15 − 0.15 − 0.2 − 0.2 0.15 0.1 0.1 0.05 0.05 0 0 − 0.05 − 0.05 − 0.1 − 0.1 − 0.15 − 0.15 − 0.2 − 0.2 − 0.25 − 0.25 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 0.15 (e) (d) 0.2 0.1 0.1 0.05 0 0 − 0.05 − 0.1 − 0.1 − 0.2 − 0.15 − 0.3 0.2 0.1 0.1 0.05 0 0 − 0.05 − 0.1 − 0.1 − 0.2 − 0.15 − 0.3 − 0.2 − 80 − 60 − 40 − 20 0 20 40 60 − 100 − 80 − 60 − 40 − 20 0 20 40 60 80 100 19

  22. (a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed 20

  23. 10 (a) 1.5 9 1.3 � 6 5 � 8 � 1 1.1 7 6 0.9 � 2 Energy 5 1.398 1.402 1.406 � 6 4 � 5 � 4 3 � � 3 3 2 � 4 1.258 1.261 � 1 1 � 2 1.332 1.342 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 Speed 21

  24. 10 (a) 1.5 9 1.3 � F E � 8 � A 1.1 7 6 0.9 B � Energy 5 1.398 1.402 1.406 � F 4 E � � D C � C � 3 2 � D 1.258 1.261 � A 1 B � 1.332 1.342 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 Speed 0.2 0.2 (c) (b) 0.1 0.1 0 0 − 0.1 − 0.1 − 0.2 − 0.2 − 0.3 − 0.3 − 0.4 − 0.4 − 0.5 0.2 0.2 0.1 0.1 0 0 − 0.1 − 0.1 − 0.2 − 0.2 − 0.3 − 0.3 − 0.4 − 0.4 − 0.5 − 0.5 − 40 − 20 0 20 40 60 − 60 − 40 − 20 0 20 40 60 (d) (e) 0.2 0.15 0.1 P 0.1 0 0.05 − 0.1 − 0.2 0 − 0.3 − 0.05 − 0.4 − 0.1 − 0.5 − 0.6 − 0.15 − 0.7 − 0.2 0.15 0.2 0.1 0.1 Q 0 0.05 − 0.1 0 − 0.2 − 0.05 − 0.3 − 0.4 − 0.1 − 0.5 − 0.15 − 0.6 − 0.2 − 0.7 22 − 0.8 − 0.25 − 25 − 20 − 15 − 10 − 5 0 5 10 15 20 25 30 − 80 − 60 − 40 − 20 0 20 40 60 80

  25. HYDROELASTIC WAVES Tao Gao, Zhan Wang 23

  26. 0.8 0.6 0.4 0.2 0 − 0.2 − 0.4 − 0.6 − 0.8 − 1 − 150 − 100 − 50 0 50 100 150 24

  27. GENERALISED SOLITARY WAVES 25

  28. 0 26

  29. Clamond et al, Journal of Fluid Mechanics (2015) 784, pp 664-680 27

  30. 0 28

  31. 0 Wang Z., Parau E.I. , Milewski P.A. and Vdb (2014) Proc. Roy. Soc. A 470 29

  32. 0 (1) -0.2 0 (2) -0.2 -40 0 40 0 (1 † ) -0.2 0 (2 † ) -0.2 -40 0 40 0 (1 ‡ ) -0.2 0 (2 ‡ ) 30 -0.2 -40 0 40

  33. Non-symmetric PERIODIC gravity-capillary waves Tao Gao and Zhan Wang Zufiria (1987) Shimizu ans Shoji (2012) 31

  34. Symmetric waves 1 0.5 0 -0.5 -1 -1.5 0 2 4 6 8 10 12 14 16 18 20 32

  35. Non-symmetric waves 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.14 -0.16 -7 -6 -5 -4 -3 -2 -1 0 33

  36. Non-symmetric waves 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -6 -5 -4 -3 -2 -1 0 34

  37. Non-symmetric waves 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -7 -6 -5 -4 -3 -2 -1 0 35

  38. Non-symmetric waves 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -6 -5 -4 -3 -2 -1 0 36

  39. 0.14 0.13 0.12 0.11 q 0.1 0.09 0.08 0.07 0.04 0.06 0.08 0.1 0.12 0.14 0.16 b 6 37

  40. THREE-DIMENSIONAL FLOWS Use Green’s theorem instead of Cauchy inte- gral equation formula. Emilian Parau, Mark Cooker, VdB Olga Trichtchenko, Paul Milewski, Emilian Pa- rau, VdB 38

  41. 39

  42. 0.5 z 0 − 0.5 − 1 − 1.5 40 20 0 y 40 30 − 20 20 10 0 − 10 x − 40 − 20 − 30

  43. 0.5 z 0 − 0.5 − 1 40 30 41 20 − 1.5 10 y − 30 − 20 − 10 0 0 10 20 30 x

  44. 0.5 z 0 − 0.5 40 − 1 30 20 42 − 1.5 10 − 30 − 20 y − 10 0 10 0 20 30 x

  45. NON-SYMMETRIC 3D WAVES Model: Akers and Milewski (2009) √ √ 2 2 4 H [ u − u xx − 2 u yy ] + α ( u 2 ) x = 0 u t + 2 u x − Zhan Wang 43

  46. 44

  47. 45

  48. Three dimensional flexural waves Olga.... 46

  49. 47

  50. 48

  51. Conclusions New non-symmetric gravity-capillary waves for the Euler’s equations in 2D (solitary waves) New non-symmetric flexural waves for the Eu- ler’s equations in 2D (solitary waves) New non-symmetric gravity-capillary waves for a model in 3D (solitary waves) New non-symmetric generalised solitary waves in 2D New non-symmetric periodic gravity-capillary waves in 2D 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend