neutron particle 210 bi nucleus
play

neutron-particle 210 Bi nucleus Natalia Cieplicka- Oryczak INFN, - PowerPoint PPT Presentation

High- and low-spin structures in the proton-particle neutron-particle 210 Bi nucleus Natalia Cieplicka- Oryczak INFN, Sezione di Milano, Milano, Italy Institute of Nuclear Physics, Polish Academy of Sciences, Krakw, Poland Outline Why the


  1. High- and low-spin structures in the proton-particle neutron-particle 210 Bi nucleus Natalia Cieplicka- Oryńczak INFN, Sezione di Milano, Milano, Italy Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

  2. Outline Why the 210 Bi nucleus?  An ideal nucleus for testing the shell- model calculations : couplings between valence proton and valence neutron Z=82  An ideal system for studying phonon (3 – of 208 Pb)-valence particles coupling N=126 Experimental data 210 Bi  Low-spin structure – neutron capture 208 Pb experiment at Institute Laue-Langevin (Grenoble, France)  High-lying yrast states – deep-inelastic reactions for the system 208 Pb + 208 Pb (Argonne National Laboratory, USA)

  3. Experiment – ILL Grenoble (PF1B line) 8 EXOGAM clovers 6 GASP detectors γ 2 ILL clovers n 210 Bi 209 Bi γ γ Cold neutron flux of 209 Bi solid Population of capture state in 2  10 10 /(ns  cm 2 ) from 210 Bi at binding energy of target (3g) the ILL reactor with 4.6 MeV energy < 5 meV 16 Ge detectors of EXILL array: 8 of EXOGAM, 6 of GASP, and 2 from ILL collaboration – coincidence measurements of gamma rays

  4. Experiment – ILL Grenoble (PF1B line) 8 EXOGAM clovers 6 GASP detectors 2 ILL clovers 16 Ge detectors of EXILL array: 8 of EXOGAM, 6 of 8 detectors of EXOGAM arranged into ring around the target at GASP, and 2 from ILL collaboration – coincidence every 45° so angular correlation measurements could be measurements of gamma rays performed

  5. Experimental results: level scheme γ γ n 210 Bi 209 Bi γ γ (4 – , 5 – ) 9/2 – 0 4.6 MeV Capture state 209 Bi at neutron binding energy 1 – 0

  6. 4605 320 0 210 Bi

  7. 320 674 1013 4605 2599 1013 674 320 0 210 Bi

  8. 611 944 645 311 4605 2023 1055 611 944 645 311 271 0 210 Bi

  9. Experimental results: level scheme 64 primary transitions Population of neutron capture state at 4605.2(1) keV (40 new) 4605 70 excited states (33 new) 0 210 Bi

  10. Angular correlations of g rays from 210 Bi The angular correlation function for a pair of coincident g 3+ 993 rays connecting the nuclear states with spins J i  J  J f is g 1 usually expressed as: 674  2- W( Θ ) = 1 + A 2 P 2 (cos Θ ) + A 4 P 4 (cos Θ ) 320 320 g 2 1- 0 Θ – the angle between the direction of emission of two g rays P n (cos Θ ) – Legendre polynomials A n = q n A (1) A (2) – the coefficients which depend on the attenuation factor q n as well as on the multipolarities of 1 and 2 674 keV g rays and the spins of involved nuclear states 0 degree 45 degree q 2 = 0.86(2) 90 degree q 4 = 0.60(3) Counts Normalization: number of pairs of the detectors, efficiency  W( Θ ) norm0 = 0.495(5) (4 combinations) norm45 = 2.020(12) (16 combinations) norm90 = 1 (8 combinations) Energy [keV]

  11. 4-, 5- 4605 Spin-parity assignments  J=1(+2)  J=0(+1)  J=0(+1)  J=0(+1)  J=1(+2)  J=0(+1) W W W 1.4 1.4 W 2505-393 1.4 2505-320 1.4 2505-674 2505-1596 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1. 1. 1. 1. 0 0 0.9 4 2 0.9 0 4 2 0 0.9 0.9 4 2 4 2 0.8 A 2 =-0.14(2), A 4 =-0.03(3) 0.8 A 2 =-0.13(2), A 4 =-0.02(5) A 2 =0.24(3), A 4 =-0.01(6) 0.8 0.8 A 2 =-0.11(2), A 4 =0.03(4) 0.7 0.7 0.7 0.7 δ 2505 =0.04(8) δ 393 =-0.3(3) δ 2505 =0.07(12) δ 1596 =0.01(3) ( δ 2505 =-0.82(12)) ( δ 2505 =-0.88(19)) E2 E2 E2 M1+E2 E2 M1(+E2) W W W 1.3 1.3 2624-1709 1.3 2624-1430 2624-1398 (5) 2100 1.2 1.2 1.2 1.1 1.1 1.1 1. 1. 1. 1981 7 – 0 0 0 0.9 0.9 4 2 0.9 4 2 4 2 A 2 =0.11(3), A 4 =0.04(5) A 2 =-0.10(3), A 4 =0.02(7) 0.8 0.8 0.8 A 2 =-0.19(3), A 4 =0.00(7) 0.7 0.7 0.7 4 + δ 1398 =0.05(5) δ 1430 =-0.11(5) 1524 M1(+E2) M1(+E2) (E1) W W W 530-674 1.2 1.2 530-320 1175-320 1.2 1.1 1.1 1.1 1. 1. 1. 0 0 4 2 0 4 2 0.9 4 2 0.9 0.9 A 2 =0.01(1), A 4 =-0.03(3) A 2 =0.04(3), A 4 =0.03(6) A 2 =0.02(1), A 4 =-0.02(2) 0.8 0.8 0.8 δ 530 =0.09(3) δ 530 =0.06(2) δ 1175 =0.03(5) 0 1-

  12. 4-, 5- 4605 Spin-parity assignments  J=1(+2)  J=1(+2)  J=1(+2) W W W 1013-674 1.3 1013-320 1659-320 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1. 1. 1. 0 0 0 0.9 4 2 0.9 4 2 0.9 4 2 A 2 =0.10(5), A 4 =-0.01(11) 0.8 A 2 =0.10(2), A 4 =0.01(4) 0.8 0.8 A 2 =-0.06(5), A 4 =-0.08(10) 0.7 0.7 0.7 δ 1013 =-0.10(4) δ 1659 =0.23(14) δ 1013 =-0.11(9) (E2) M1(+E2)  J=1 M1(+E2) M1(+E2) (M1) W W W 3633-563 (5) 2100 1.2 1.2 1.2 634-563 409-563 (4) 2007 1.1 1.1 1.1 1981 7 – 1. 1. 1. 0 0 0 (7-) 4 2 4 2 4 2 0.9 0.9 0.9 A 2 =0.10(3), A 4 =0.03(6) 1527 A 2 =-0.05(4), A 4 =-0.02(8) A 2 =-0.07(6), A 4 =-0.05(11) 4 + 0.8 0.8 1524 0.8 δ 563 =0.10(8) δ 563 =0.25(30) (2) 1197 (M1) (M1) W 1.3 611-645 1.2 1.1 1. 0 4 2 0.9 A 2 =0.07(5), A 4 =0.07(11) 0.8 0 1-

  13. Comparison with shell-model calculations for low-spin states Kuo-Herling interactions were used. Firmly known states used to fit TBME of p-n interaction E. K. Warburton, B. A. Brown, Phys. Rev. C 43, 602 (1991) Observed in other experiments Shell-model calculations Experimental results (EXILL) 210Bi

  14. Comparison with shell-model calculations for low-spin states 3120 (2,3,4) 3097 3 – × ( π h 9/2 ν g 9/2 ) 3045 3023 (3,4) 2979 3- × 0-  3+ 3- × 1-  2+, 3+, 4+ (4,5,6) 2883 3- × 9-  6+, 7+, 8+, (9+, 10+, 11+, 12+) (3,4,5) 2807 (4,5,6) 2730 (3,4,5) 2726 3 – 2.6 MeV 2556 (4,5) (5) 2147 4(+) 2007 Experimental Shell-model 0+ 0 Observed in results (EXILL) calculations other experiments 210Bi 208Pb

  15. Deep-inelastic collisions γ γ γ beam 208 Pb beam on 208 Pb target (76mg/cm 2 )   Energy: 1446 MeV (7 MeV/nucleon) beam target  Pulsed beam prompt and delayed gamma-gamma coincidences  Detectors of Gammasphere divided into 6 rings around beam axis with average values of  angle: 17.3°, 35.5°, 52.8°, 69.8°, 79.9°, 90.0° Gammasphere, Argonne National Laboratory, USA

  16. 210 Bi – level scheme Previously known part of the level scheme (B. Fornal, Habilitation thesis, Raport No. 1939/PL (2004)) Counts Previously known Observed in present studies Counts E g [keV] The sum of delayed spectra (double gates on every pair of previously known transitions: 398, 653, 1403, 1514 keV)

  17. 210 Bi – level scheme Evidence of high-lying isomer at ~10 MeV excitation 211, 217, 350, 358, 362, 371, 414, 439, 783, 1104 keV Counts Previously known Observed in present studies Counts E g [keV] The sum of delayed spectra (double gates on every pair of previously known transitions: 398, 653, 1403, 1514 keV)

  18. Angular distributions of g rays from 210 Bi The angular distribution function for a transition J i  J f , Spin alignment where J represents the spin of nuclear state, is usually J 1 expressed as: l i W( Θ ) = 1 + A 2 P 2 (cos Θ ) + A 4 P 4 (cos Θ ) l f g J 2  beam Entrance angular Angular momentum Exit relative angular momentum momentum l i transfer from orbital l f and intrinsic spins J 1 , J 2 of the Θ – the angle between the beam direction and the direction of g ray into intrinsic spin fragments emission P n (cos Θ ) – Legendre polynomials max – the coefficients which depend on the attenuation A n = α n A n Angular momentum is divided between the fragments factor α n as well as on the multipolarity of a according to their masses (assuming rigid rotation) g ray and the spins of involved nuclear states α 2 = 0.6(1) 5   α 4 = 0.2(5) J A 3    1 1     J A Normalization: isotropic distribution of the 516-881-803-keV cascade 2 2 deexciting the 125- μ s isomer in 206Pb.

  19. Angular distributions of g rays from 210 Bi E1 653 keV E3 224 keV 1403 keV M1+E2 398 keV 151 keV M1+E2 783 keV M1/E1 M1+E2 371 keV 1050 keV 1252 keV E2 M2(+E3) M2(+E3) E1 744 keV 1821 keV M1+E2 Con onversio ion coeffic icie ients α E [keV] Type 131 4.78(48) M1 2613 keV 1514 keV 151 3.17(28) M1(+E2) 154 5(2) M1 M2(+E3) M1+E2 175 0.7(1) E2 224 0.98(9) M1(+E2) 398 0.19(5) M1(+E2)

  20. 210 Bi – spin-parity assignments for the yrast states (20 – ) E1 653 keV E3 224 keV 1403 keV M1+E2 (19 – ) (17 – ) 398 keV 151 keV M1+E2 783 keV M1/E1 M1+E2 (16 – ) (15 – ) (14 – ) (16 + ) 371 keV 1050 keV 1252 keV (15 + ) E2 (13 + ) M2(+E3) M2(+E3) E1 744 keV 1821 keV M1+E2 Con onversio ion coeffic icie ients α E [keV] Type 131 4.78(48) M1 2613 keV 1514 keV 151 3.17(28) M1(+E2) 154 5(2) M1 M2(+E3) M1+E2 175 0.7(1) E2 224 0.98(9) M1(+E2) 398 0.19(5) M1(+E2)

  21. 210 Bi – shell-model calculations for the yrast states Couplings with 3 – excitation The higher states involve the promotions of at 2615 keV in 208 Pb proton or neutron across the energy gap – the calculations with the core excitations must be performed ( π h 9/2 ν j 15/2 )12 + × 3 – ( π i 13/2 ν g 9/2 )11 + × 3 – ( π h 9/2 ν g 9/2 )10 – × 3 – 210 Bi structure arises from 1-p 1-n couplings up to the 2725-keV state (14 – ) 3p 1/2 3p 3/2 2f 5/2 3d 3/2 2g 7/2 4s 1/2 1i 13/2 3d 5/2 1j 15/2 Firmly known states 2f 7/2 1i 11/2 used to fit TBME of p-n interaction 1h 9/2 2g 9/2 E. K. Warburton, B. A. Brown, Phys. Rev. 208 Pb C 43, 602 (1991) neutrons protons

  22. Spin distribution (experimental results) 10 16 12 9 14 – from π i 13/2 ν j 15/2 Full multiplet π h 9/2 ν g 9/2 Newly found states

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend