neutrino properties from neutrino telescopes
play

Neutrino Properties from Neutrino Telescopes Irina Mocioiu Penn - PowerPoint PPT Presentation

Neutrino Properties from Neutrino Telescopes Irina Mocioiu Penn State PHENO 2008, April 28 2008 IceCube What to look for? Point sources Diffuse fluxes from sources from cosmic ray interactions from dark matter annihilation


  1. Neutrino Properties from Neutrino Telescopes Irina Mocioiu Penn State PHENO 2008, April 28 2008

  2. IceCube

  3. What to look for? • Point sources • Diffuse fluxes • from sources • from cosmic ray interactions • from dark matter annihilation • ... • Correlations with other observations: cosmic rays, gamma rays...

  4. Lessons for Particle Astrophysics Weak interactions - access to dense, violent envirenoments - test mechanism powering astrophysical sources - cosmic ray acceleration processes - cosmic ray propagation and intergalactic photon backgrounds - ... Lessons for Particle Physics high energies, beyond those accessible in colliders, etc. weak interactions - neutrino interaction cross-sections (in Standard Model!) - neutrino properties - new interactions/particles - dark matter - ...

  5. How to do it? - energy distributions - angular distributtions - flavour composition Observables • Muon tracks: ν µ CC interactions: ν µ + N → µ + X • Electromagnetic showers: Tau decay: τ → e + ¯ ν e + ν τ ν e CC interactions: ν e + N → e + X • Hadronic showers Tau decay: τ → ν τ + X ν τ NC interactions: ν τ + N → ν τ + X ν τ CC interactions: ν τ + N → τ + X ν e,µ NC and CC interactions

  6. Deep Core Array • motivation: galactic sources, dark matter annihilation • need to reduce large cosmic muon background • dense phototube coverage region • in the deep ceter region of IceCube • low energy threshold

  7. Atmospheric Neutinos Cosmic ray π 0 π + µ + ∼ 30km e + ν µ ν e ¯ ν µ Underground ν e , ,¯ ν e , , ν µ , ¯ ν µ detector N ( ν µ +¯ ν µ ) • Expect: ν e ) ∼ 2 at low energy N ( ν e +¯ ∼ isotropic • background to many IceCube searches

  8. Summary of Experimental Results • Solar Neutrinos: ν e → ν x , x = µ, τ + reactor antineutrinos ∆ m 2 7 . 6 × 10 − 5 eV 2 ≃ sol tan 2 θ sol 0 . 45 ≃ • Atmospheric Neutrinos: ν µ → ν x , x = τ + accelerator neutrinos ∆ m 2 2 . 5 × 10 − 3 eV 2 ≃ atm sin 2 2 θ atm 1 ≃ • Reactor antineutrinos: ¯ ν e �→ ¯ ν e sin 2 2 θ reactor < ∼ 0 . 1 for ∆ m 2 ∼ 10 − 3 eV 2

  9. Three flavors s 13 e − iδ  c 12 c 13 s 12 c 13  − s 12 c 23 − c 12 s 23 s 13 e iδ c 12 c 23 − s 12 s 23 s 13 e iδ s 23 c 13     s 12 s 23 − c 12 c 23 s 13 e iδ − c 12 s 23 − s 12 c 23 s 13 e iδ c 23 c 13 ∆ m 2 21 = ∆ m 2 ∆ m 2 32 = ∆ m 2 sol , atm θ 12 = θ sol , θ 13 = θ reactor , θ 23 = θ atm , δ We want to measure: • θ 13 • hierarchy (sign of ∆ m 2 atm ) • CP violation ( δ ) large effort to build new accelerator experiments for this purpose use matter effetcs

  10. Neutrino Oscillations in IceCube µ like fully contained events Angular distribution: • cos θ ∈ (0 , 1) atmosperic flux normalization • cos θ ∈ ( − 0 . 9 , 0) + main oscillation signal (∆ m 2 32 , θ 23 ) • cos θ ∈ ( − 1 , − 0 . 9) + matter effects ( θ 13 , hierarchy, CP) Energy distribution: • E ≤ 40GeV: neutrino oscillations • 50 GeV ≤ E ≤ 5 TeV atmospheric neutrino flux • E ≥ 10 TeV: Earth density profile • χ 2 fit to discriminate between normal and inverted hierarchy

  11. Normal versus inverted hierarchy: O. Mena, I. M., S. Razzaque Normal � 100 Mt yr, Θ 23 � 45 � , no systematics � Inverted � 100 Mt yr, Θ 23 � 45 � , no systematics � Normal � 100 Mt yr, Θ 23 � 45 � , 10 � systematics � 150 150 150 100 90 � 90 � 90 � 90 � 100 90 � 90 � 90 � 90 � 90 � 90 � 90 � 90 � 90 � 90 � 100 90 � 90 � 50 99 � 99 � 99 � 99 � 50 99 � 99 � 99 � 99 � 99 � 99 � 99 � 99 � 99 � 99 � 50 ∆ cp ∆ cp ∆ cp 0 0 0 � 50 � 50 95 � 95 � 95 � 95 � � 50 95 � 95 � 95 � 95 � 95 � 95 � 95 � 95 � 95 � 95 � � 100 � 100 � 100 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � 68 � � 150 � 150 � 150 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 sin 2 2 Θ 13 sin 2 2 Θ 13 sin 2 2 Θ 13

  12. Lots to learn from: - astrophysical neutrinos - long baseline experiments In the meantime: use atmospheric neutrinos in IceCube to determine neutrino oscillation parameters!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend