neutrino masses beyond d 5 tree level operators
play

Neutrino masses : beyond d=5 tree-level operators Florian Bonnet - PowerPoint PPT Presentation

Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Wrzburg University based on arXiv:0907 .3143, JHEP 10 (2009) 076 and arXiv:1205.5140 to appear in JHEP In collaboration with Daniel Hernandez, Martin Hirsch, Toshi Ota and


  1. Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Würzburg University based on arXiv:0907 .3143, JHEP 10 (2009) 076 and arXiv:1205.5140 to appear in JHEP In collaboration with Daniel Hernandez, Martin Hirsch, Toshi Ota and Walter Winter What’ s ? Invisibles12, Firenze, July 2012 ν F . Bonnet 1 July 2012 - GGI

  2. Seesaw Mechanism Standard Model (SM) does not explain masses ν Call for New Physics (NP) > EW Model independent approach : effective theories L eff = L SM + δ L d =5 + δ L d =6 + . . . Lowest order: unique d=5 operator H H Weinberg operator Neutrino masses L L Recent review A. Abada et al. ’07 F . Bonnet 2 July 2012 - GGI Identifying NP ∼ constraining new parameters

  3. Seesaw Mechanism H H ? L L F . Bonnet 3 July 2012 - GGI Identifying NP ∼ constraining new parameters

  4. Seesaw Mechanism H H µ ∆ H H H H N R Σ R Y T Y T Y Σ Y N Σ N ∆ L L L L Y ∆ L L Type I Type II Type III Minkowski 1977 Magg, Wetterich 1980, Foot, Lew, He and Joshi 1989 Yanagida 1979 Schechter, Valle 1980, Gell-Mann et al. 1979 Wetterich 1980, Mohapatra, Senjanovic 1980 Cheng, Li 1980, Lazarides, Shafi, Wetterich 1981 Mohapatra, Senjanovic 1981, F . Bonnet 4 July 2012 - GGI Identifying NP ∼ constraining new parameters

  5. Seesaw Mechanism H H µ ∆ H H H H N R Σ R Y T Y T Y Σ Y N Σ N ∆ L L L L Y ∆ L L Type I Type II Type III v 2 v 2 v 2 Y T Y T Y ∆ µ ∆ Y Σ Y N m ν ∝ m ν ∝ m ν ∝ Σ N M 2 M Σ M N ∆ Problem : ⇢ Y ∼ O (1) , M ∼ GUT No LHC access m ν < eV ⇒ small couplings Y ∼ 10 − 5 , M ∼ TeV F . Bonnet 5 July 2012 - GGI Identifying NP ∼ constraining new parameters

  6. Way out Goals : New Physics @ TeV large couplings (LFV) Means : need of additional source of suppression Radiative generation of neutrino masses d>5 operator Small lepton number violating contributions ◆ n ⇣ v m ν ∝ v 2 ✓ ⌘ d − 5 1 Λ × × ✏ LNV × 16 ⇡ 2 Λ F . Bonnet 6 July 2012 - GGI Identifying NP ∼ constraining new parameters

  7. Small lepton number violation contributions

  8. Inverse/Linear Seesaw Type II : natural H H µ ∆ ∆ Y ∆ L L v 2 Y ∆ µ ∆ m ν M 2 ∆ LFV Y † ∆ Y ∆ F . Bonnet 8 July 2012 - GGI Identifying NP ∼ constraining new parameters

  9. Inverse/Linear Seesaw Type II : natural Type I/III : extra fermion Mohapatra, Valle 1986 N 2 N 1 ν H H ν   ! Y N 0 0 µ ∆ N 1 Inverse Seesaw Y T Λ 0   N Λ 0 µ N 2 ∆ H H µ Y T Y ∆ Y N N L L N 1 N 2 N 1 L L v 2 µ − Y T Λ 2 Y N v 2 Y ∆ µ ∆ m ν m ν N M 2 ∆ Y † LFV LFV Y † N Y N ∆ Y ∆ F . Bonnet 8 July 2012 - GGI Identifying NP ∼ constraining new parameters

  10. Inverse/Linear Seesaw Type II : natural Type I/III : extra fermion Akhmedov et al. 1995 N 2 N 1 ν H H ν   ε Y 0 0 Y N ! µ ∆ N N 1 Y T Linear Seesaw Λ 0  N  T ε Y 0 Λ 0 N 2 N ∆ H H Y T Y 0 Y ∆ ε N N L L N 1 N 2 L L v 2 T v 2 v 2 ✓ ◆ Λ Y N + Y T Y 0 Λ Y 0 Y ∆ µ ∆ m ν m ν ε N N N M 2 ∆ Y † LFV LFV Y † N Y N ∆ Y ∆ F . Bonnet 8 July 2012 - GGI Identifying NP ∼ constraining new parameters

  11. d>5 operators

  12. d>5 operator arXiv:0907 .3143, JHEP 10 (2009) 076 concept : O d =5 = LLHH O d =7 ( LLHH )( H † H ) = O d =9 ( LLHH )( H † H ) 2 = . . . problem : H H H H H H ⇒ L L L L < 1 1 1 ( LLHH )( H † H ) ( LLHH ) ∝ ∝ Λ 3 16 π 2 Λ NP if NP Λ NP > 3 TeV F . Bonnet 10 July 2012 - GGI Identifying NP ∼ constraining new parameters

  13. d>5 operator concept : O d =5 = LLHH O d =7 ( LLHH )( H † H ) = O d =9 ( LLHH )( H † H ) 2 = . . . solution : genuine d=D operator as LO with all d<D forbidden new U(1) or discrete symmetry Pb : H†H singlet -> need new fields Chen, de Gouvea, Dobrescu 2006 O n +5 ∼ ( LLHH ) S n Gogoladze, Okada, Shafi, 2008 F . Bonnet 11 July 2012 - GGI Identifying NP ∼ constraining new parameters

  14. d>5 operator concept : O d =5 = LLHH O d =7 ( LLHH )( H † H ) = O d =9 ( LLHH )( H † H ) 2 = . . . solution : genuine d=D operator as LO with all d<D forbidden new U(1) or discrete symmetry Pb : H†H singlet -> need new fields Chen, de Gouvea, Dobrescu 2006 O n +5 ∼ ( LLHH ) S n Gogoladze, Okada, Shafi, 2008 O 2 n +5 ∼ ( LLH u H u )( H u H d ) n simplest possibility : d=7 with ( LLH u H u )( H u H d ) Z 5 F . Bonnet 11 July 2012 - GGI Identifying NP ∼ constraining new parameters

  15. d>5 operator decomposition : finding all possible heavy fields (mediators) for tree-level realizations of ( LLH u H u )( H u H d ) X Y L Lorentz: S (scalar), V (vector), R/L (fermion) SU(2) Hypercharge F . Bonnet 12 July 2012 - GGI Identifying NP ∼ constraining new parameters

  16. d>5 operator Type I (fermion singlet) 1 R/L 0 Type II (scalar triplet) 3 S − 1 Type III (fermion triplet) 3 R/L 0 F . Bonnet 12 July 2012 - GGI Identifying NP ∼ constraining new parameters

  17. d>5 operator : first example H u H d φ ∼ 1 S µ H u H u 0 N, N 0 ∼ 1 F φ 0 Λ Λ Y ν Y ν κ N 0 N 0 N R N R L L L L F . Bonnet 14 July 2012 - GGI Identifying NP ∼ constraining new parameters

  18. d>5 operator : first example H u H d φ ∼ 1 S µ H u H u 0 N, N 0 ∼ 1 F φ 0 Λ Λ Y ν Y ν κ N 0 N 0 N R N R L L L L m ν = v 3 u v d ν ( Λ − 1 ) T κ µ Λ − 1 Y ν Y T Masses @TeV -> Y ν ∼ 10 − 4 M 2 2 φ F . Bonnet 14 July 2012 - GGI Identifying NP ∼ constraining new parameters

  19. d>5 operator : first example H u H d φ ∼ 1 S µ H u H u 0 N, N 0 ∼ 1 F φ 0 Λ Λ Y ν Y ν κ N 0 N 0 N R N R L L L L m ν = v 3 u v d ν ( Λ − 1 ) T κ µ Λ − 1 Y ν Y T M 2 2 φ Y T ν h H 0 u i  ν h H 0   0 0  Y T u i 0 0 Y ν h H 0 u i Λ 0 Y ν h H 0 u i Λ 0     2 κ µ φ h H 0 u H 0 d i Λ 0 M φ → ∞ Λ µ LNV 0 M 2 F . Bonnet 14 July 2012 - GGI Identifying NP ∼ constraining new parameters

  20. d>5 operator : second example L H u H u Φ ∼ 2 S +1 / 2 N, N 0 ∼ 1 F 0 ζ Λ H d Y ν Y 0 N 0 N R Φ ν L L H u m ν = ζ v 3 u v d T Λ � 1 Y ν ⇣ ⌘ Y T ν Λ � 1 Y 0 ν + Y 0 4 M 4 ν Φ   ζ h H 0 d ih H 0 u i 2 T T   Y T ν h H 0 Y 0 Y T ν h H 0 u i ε LNV Y 0 u i 0 0 ν M 2 ν Φ Y ν h H 0 u i   Λ 0 Y ν h H 0 u i Λ 0     M Φ → ∞  ζ h H 0 d ih H 0 u i 2  ε LNV Y 0 Λ 0 Y 0 Λ 0 ν ν M 2 Φ F . Bonnet 14 July 2012 - GGI Identifying NP ∼ constraining new parameters

  21. d>5 operator : 1 F 0 / 3 F 0 µ LNV ε LNV 1 F 0 / 3 F 1 F 0 / 3 F 0 0 1 F 0 / 3 F 0 F . Bonnet 15 July 2012 - GGI Identifying NP ∼ constraining new parameters

  22. d>5 operator : 1 F 0 / 3 F 0 µ LNV ε LNV 1 F 0 / 3 F 1 F 0 / 3 F 0 0 1 F 0 / 3 F 0 d-5 d=7 1/ 1/ ε LNV µ LNV F . Bonnet 15 July 2012 - GGI Identifying NP ∼ constraining new parameters

  23. d>5 operator : Type II H u H d H u L L H u H u ( ) ( ) ∆ ∆ ∆ ∆ L H u L H u H d µ ∆ H u H u H d L L H u H u ∆ ∆ H d L L H u H u F . Bonnet 16 July 2012 - GGI Identifying NP ∼ constraining new parameters

  24. d>5 operator d-5 M seesaw @TeV Type I/III M other @TeV Yukawa large M seesaw @TeV M seesaw @TeV M other > TeV M other > TeV Yukawa large Yukawa large 1/ 1/ ε LNV µ LNV d-5 Type II M seesaw @TeV M other @TeV Yukawa large M seesaw @TeV M other > TeV Yukawa large 1/ 1/ Y ∆ µ ∆ F . Bonnet 17 July 2012 - GGI Identifying NP ∼ constraining new parameters

  25. Radiative neutrino masses

  26. one-loop d=5 arXiv:1205.5140, to be published in JHEP concept : H H 1 loop only, no self-energy L L F . Bonnet 19 July 2012 - GGI Identifying NP ∼ constraining new parameters

  27. one-loop d=5 Include Dark doublet Include Zee Model Ma 2006 Zee 1980 Kubo, Ma, Suematsu 2006 Partially Studied in Ma 1998 F . Bonnet 20 July 2012 - GGI Identifying NP ∼ constraining new parameters

  28. one-loop d=5 N/ Σ ∆ ∆ ∆ N/ Σ ∆ ∆ ∆ F . Bonnet 21 July 2012 - GGI Identifying NP ∼ constraining new parameters

  29. one-loop d=5 N/ Σ ∆ ∆ F . Bonnet 21 July 2012 - GGI Identifying NP ∼ constraining new parameters

  30. one-loop d=5 Other problem : Forbid tree-level d=5 solution : It depends ... Loop Seesaw N/ Σ ∆ ∆ F . Bonnet 22 July 2012 - GGI Identifying NP ∼ constraining new parameters

  31. one-loop d=5 F . Bonnet 23 July 2012 - GGI Identifying NP ∼ constraining new parameters

  32. one-loop d=5 F . Bonnet 23 July 2012 - GGI Identifying NP ∼ constraining new parameters

  33. one-loop d=5 simple symmetry is enough Z 2 F . Bonnet 23 July 2012 - GGI Identifying NP ∼ constraining new parameters

  34. one-loop d=5 loop = singlet Z n : loop tree ⇒ solution : No LNV couplings Fermion in loop : Majorana to prevent scalar vev Z 2 F . Bonnet 24 July 2012 - GGI Identifying NP ∼ constraining new parameters

  35. one-loop d=5 loop = singlet Z n : loop tree ⇒ solution : No LNV couplings Fermion in loop : Majorana to prevent scalar vev Z 2 F . Bonnet 24 July 2012 - GGI Identifying NP ∼ constraining new parameters

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend