neutrino mass models
play

Neutrino mass models and sizable 13 Christoph Luhn Prologue - PowerPoint PPT Presentation

GGI neutrino workshop Florence July 3rd, 2012 Neutrino mass models and sizable 13 Christoph Luhn Prologue remarkable results from neutrino oscillation experiments tri-bimaximal lepton mixing (until recently) family symmetries


  1. GGI neutrino workshop Florence – July 3rd, 2012 Neutrino mass models and sizable θ 13 Christoph Luhn

  2. Prologue � remarkable results from neutrino oscillation experiments � tri-bimaximal lepton mixing (until recently) � family symmetries like A 4 and S 4 � origin of the Klein symmetry in the neutrino sector � strategies of implementing a sizable reactor angle θ 13 (post T2K) · tri-bimaximal mixing plus corrections (from extra ingredient) · new family symmetries · non-standard vacuum configurations Neutrino mass models and sizable θ 13 1 of 22

  3. A brief history of neutrino mixing � atmospheric neutrinos · ν µ / ν µ disappear – Super-Kamiokande (1998) � accelerator neutrinos · ν µ disappear – K2K (2002), MINOS (2006) · ν µ converted to ν τ – OPERA (2010 & 2012) · ν µ converted to ν e – T2K, MINOS (2011) � solar neutrinos · ν e disappear – Chlorine (1998), Gallium (1999 - 2009), Super-Kamiokande (2002), Borexino (2008) · ν e converted to ( ν µ + ν τ ) – SNO (2002) � reactor neutrinos · ν e disappear – Double Chooz (2011), Daya Bay, RENO (2012) · ν e disappear – KamLAND (2002) Neutrino mass models and sizable θ 13 2 of 22

  4. 2011/2012 story of non-zero θ 13 T2K [arXiv:1106.2822] · θ 13 � = 0 disfavored at ∼ 2 . 5 σ MINOS [arXiv:1108.0015] · θ 13 � = 0 disfavored at ∼ 1 . 6 σ Double Chooz [arXiv:1112.6353] · θ 13 � = 0 disfavored at ∼ 2 σ —————— Daya Bay [arXiv:1203.1669] · θ 13 � = 0 disfavored at ∼ 5 . 2 σ · 7 . 9 ◦ � θ 13 � 9 . 6 ◦ RENO [arXiv:1204.0626] · θ 13 � = 0 disfavored at ∼ 4 . 9 σ · 8 . 7 ◦ � θ 13 � 10 . 8 ◦ Neutrino mass models and sizable θ 13 3 of 22

  5. Three neutrino flavor mixing (in diagonal charged lepton basis) flavor PMNS mixing mass       ν e U e 1 U e 2 U e 3 ν 1  =      ν µ U µ 1 U µ 2 U µ 3 ν 2 ν τ U τ 1 U τ 2 U τ 3 ν 3 atmospheric reactor + Dirac solar Majorana         0 s 13 e − iδ 1 0 0 0 1 0 0 c 13 c 12 s 12 α 2         U PMNS = 0 c 23 s 23 0 1 0 − s 12 c 12 0 0 e 0 2 − s 13 e iδ 0 α 3 0 − s 23 c 23 0 0 1 0 0 c 13 e 2 Neutrino mass models and sizable θ 13 4 of 22

  6. Tri-bimaximal lepton mixing vs. global neutrino fits   − 2 1 0 √ √ 6 3   1 1 1 ≈ ≡ U PMNS U TB   √ √ √ 6 3 2 1 1 1 − √ √ √ 6 3 2   PMNS-angles tri-bimax. 1 σ exp . 1 σ exp .      sin 2 θ 12 : 1  0 . 303 − 0 . 335 0 . 291 − 0 . 325 3 ⇒ sin 2 θ 23 :  1 0 . 44 − 0 . 58 0 . 37 − 0 . 44   2     sin 2 θ 13 : 0 0 . 022 − 0 . 030 0 . 021 − 0 . 028 Forero et al. Fogli et al. (2012) (2012) · TB mixing fits relatively well → family symmetry, e.g. A 4 , S 4 · how to accommodate sizable θ 13 ∼ 8 ◦ − 10 ◦ ? Neutrino mass models and sizable θ 13 5 of 22

  7. Non-Abelian family symmetries · unify three families in multiplets of family symmetry · group should have three-dimensional representations SU (3) PSL 2 (7) ∆(96) SO (3) → ∆(27) Z 7 ⋊ Z 3 S 4 → A 4 Neutrino mass models and sizable θ 13 6 of 22

  8. Symmetries of the mass matrices charged leptons M ℓ = diag ( m e , m µ , m τ ) symmetric under diagonal phase transformation h M ℓ = h T M ℓ h ∗ 4 πi 2 πi 3 ) 3 , e e.g. h = diag (1 , e M ν = U PMNS diag ( m ν 1 , m ν 2 , m ν 3 ) U T neutrinos PMNS symmetry of M ν depends on U PMNS M ν = k T M ν k k = U ∗ PMNS diag ( ± 1 , ± 1 , ± 1) U T PMNS require det k = 1 four different k → generate Z 2 × Z 2 symmetry group Klein symmetry K = { 1 , k 1 , k 2 , k 3 } for U PMNS = U TB : − 1 2 2 1 0 0     1  ,  , k 1 = 2 − 1 2 k 2 = − 0 0 1 k 3 = k 1 k 2   3 − 1 2 2 0 1 0 Neutrino mass models and sizable θ 13 7 of 22

  9. Origin of the Klein symmetry � “direct” models · Klein symmetry K ⊂ family symmetry G · flavon fields φ break G down to K in neutrino sector · for TB mixing ( k 1 , k 2 , h ) generate S 4 � “indirect” models · Klein symmetry K not necessarily ⊂ family symmetry G · G responsible for generating particular flavon VEV configurations · for TB mixing – from e.g. ∆(27), Z 7 ⋊ Z 3 − 2 1 0       � φ 1 � ∝ 1 � φ 2 � ∝ 1 � φ 3 � ∝ 1       1 1 − 1 ν ( φ 1 φ T 1 + φ 2 φ T 2 + φ 3 φ T ⇒ L ν ∼ 3 ) ν H H Neutrino mass models and sizable θ 13 8 of 22

  10. Typical model setup ingredients: M Pl M GUT family symmetry broken M seesaw → M R / Yukawas generated Majorana ν L electroweak symmetry broken M EW seesaw → light fermion masses generated Neutrino mass models and sizable θ 13 9 of 22

  11. Implementing sizable θ 13 direct models indirect models TB plus corrections TB plus corrections other family symmetries with non-standard K non-standard flavon VEV configurations Neutrino mass models and sizable θ 13 10 of 22

  12. TB plus non-diagonal charged leptons

  13. Charged lepton corrections to TB mixing · charged lepton mass matrix might not be diagonal (GUTs) · U PMNS = V ℓ L V † V † and ν L = U TB ν L       1 0 0 0 ˆ ˆ 0 c 13 s 13 c 12 s 12       s ∗ U PMNS = 0 c 23 s 23 ˆ 0 1 0 − ˆ c 12 0 12 s ∗ s ∗ 0 − ˆ − ˆ 0 0 0 1 c 23 c 13 23 13 � 23 ) � e iδ ν 12 e iδ ℓ 13 e i ( δ ℓ 13 − δ ν c ij = cos θ ij 12 − θ ℓ 12 + θ ℓ s 12 e iδ 12 1 ≈ √ 3 � � s ij = sin θ ij e − iδ ij ˆ e iδ ν 23 e iδ ℓ 23 − θ ℓ s 23 e iδ 23 1 ≈ √ 23 2 � � 23 ) − θ ℓ 12 e i ( δ ℓ 12 + δ ν 13 e iδ ℓ s 13 e iδ 13 1 − θ ℓ ≈ √ 13 2 · θ ℓ θ 13 ∼ 9 ◦ 12 ∼ θ C ∼ 0 . 22 → · not (easily) compatible with Georgi-Jarlskog relations Neutrino mass models and sizable θ 13 11 of 22

  14. TB plus new TB breaking flavon

  15. An S 4 model of leptons τ c µ c e c N c matter L H u H d King, Luhn (2011) 1 ′ S 4 3 1 1 3 1 1 Z ν 1 2 2 2 2 0 0 3 Z ℓ 0 2 1 0 0 0 0 3 � 0 � flavons ϕ ℓ η µ η e ϕ ν η ν ξ ν ζ ν   � η µ � = 0 3 ′ 3 ′ 1 ′ w µ S 4 2 2 2 1   � ϕ ℓ � = v ℓ � w e � Z ν 0 0 0 2 2 2 0 3 0 � η e � = 0 Z ℓ 1 1 2 0 0 0 0 3   1 � 1 �   � ϕ ν � = v ν � η ν � = w ν � ξ ν � = u ν � ζ ν � = z ν 1 1 1 Neutrino mass models and sizable θ 13 12 of 22

  16. Charged lepton sector � M 2 ( Lϕ ℓ ) 2 η e e c � M ( Lϕ ℓ ) 1 ′ τ c + M 2 ( Lϕ ℓ ) 2 η µ µ c + 1 1 1 W ℓ ∼ H d · Z ℓ 3 controls pairing of flavons with right-handed charged fermions · different S 4 contractions of ( Lϕ ℓ ) pick out different L i components ( Lϕ ℓ ) 1 ′ = L 1 ϕ ℓ 1 + L 2 ϕ ℓ 3 + L 3 ϕ ℓ 2 → L 3 � L 1 ϕ ℓ 3 + L 2 ϕ ℓ 2 + L 3 ϕ ℓ 1 � � L 2 � ( Lϕ ℓ ) 2 = → L 1 ϕ ℓ 2 + L 2 ϕ ℓ 1 + L 3 ϕ ℓ 3 L 1 · mass matrix diagonal by construction · m τ heavier than m µ and m e · hierarchy between m µ and m e due to hierarchy of VEVs w µ and w e · just a toy model of charged lepton sector (with GUTs off-diagonals) Neutrino mass models and sizable θ 13 13 of 22

  17. Neutrino sector W ν ∼ LN c H u + ( ϕ ν + η ν + ξ ν ) N c N c + 1 M ζ ν η ν N c N c · trivial Dirac neutrino Yukawa � · neutrino mixing governed by heavy right-handed neutrinos · S 4 multiplication rule ( N c ∼ 3 ) 3 ⊗ 3 = ( 3 ′ + 2 + 1 ) s · three TB conserving flavons ϕ ν η ν ξ ν · ζ ν flavon is neutral except for S 4 ( ζ ν ∼ 1 ′ ) 1 ′ ⊗ ( 3 ⊗ 3 ) = ( 3 + 2 + 1 ′ ) s · only one extra term involving ζ ν · this breaks TB structure (at higher order) ... Neutrino mass models and sizable θ 13 14 of 22

  18. Breaking of the TB Klein symmetry K Dirac term LN c H u respects K ⊂ S 4 � � N c N c respect k 1 but break k 2 1 Majorana terms ϕ ν + η ν + ξ ν + M ζ ν η ν S 4 irrep k 1 k 2 alignment       − 1 2 2 1 0 0 1 1       3 ′ 2 − 1 2 0 0 1 � ϕ ν � ∝ 1 3 2 2 − 1 0 1 0 1 � 1 � 0 � 1 � � � 0 1 � η ν � ∝ 2 0 1 1 0 1 1 1 � ξ ν � ∝ 1 1 1 ′ 1 − 1 � ζ ν � ∝ 1 Neutrino mass models and sizable θ 13 15 of 22

  19. Resulting mixing − 1 − 1  2   0 1 1   1 0 0  M 1 + M 3  + 2 M 2 + M 3 − M 1  + M 1 + M 2 − M 3 − 1 − 1 M R = 2 1 1 0 0 0 1     6 6 3 − 1 − 1 2 1 0 1 0 1 0 − 1 0 1   − 1 ← + ∆ 1 0 small TB breaking term   − 1 0 1   − 2 1 − 2 6 α ∗ √ √ √ 6 3   1 1 1 1 1 6 α ∗ 6 − 2 + = ⇒ U PMNS ≈ 2 α  √ √ √ √ √  3 1 1 1 − 1 1 6 α ∗ 6 + 2 + 2 α √ √ √ √ √ 3 � � � Im  M 1 + M 3  √ � ∆ � � ∆ M 1 − M 3 ≈ − 3 · Re α  Re + Im  � � M 1 − M 3 M 1 − M 3 M 1 + M 3 Re M 1 − M 3 � � ∆ Im √ M 1 − M 3 ≈ 3 · Im α � � M 1 + M 3 Re M 1 − M 3 Neutrino mass models and sizable θ 13 16 of 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend