nanostructured hard magnets
play

Nanostructuredhardmagnets JuliaLyubinaandOliverGutfleisch - PDF document

Nanostructuredhardmagnets JuliaLyubinaandOliverGutfleisch InstituteforMetallicMaterials, IFWDresden,Germany Outline Fundamentalconcepts Nd(Pr)$Fe$Balloys Sm$Coalloys Fe$Ptalloys


  1. Nanostructured�hard�magnets Julia�Lyubina�and�Oliver�Gutfleisch Institute�for�Metallic�Materials, IFW�Dresden,�Germany Outline Fundamental�concepts Nd(Pr)$Fe$B�alloys Sm$Co�alloys Fe$Pt�alloys incl.�preparation sintering hydrogen$assisted�methods�(HD,�HDDR) melt�spinning mechanical�alloying hot�deformation A� (very) brief�history�of�permanent�magnets Μα �� �� ετ �� �� ετ �� �� �� µ �� µ �� �� �� Μα �� Μα �� �� �� ετ �� ετ � � � � go�back�to�ancient�Greek:� Μα Μα Μα ετ ετ µ µ Μα Μα ετ ετ magnetite�(Fe 3 O 4 )�=�loadstone China:�earliest�literary�reference�to�magnetism�in�a� “Book�of�the�Devil�Valley�Master��������������” (4 th century�BC�) • spoon$shaped�compass�2000�years�ago • open$sea�navigation�since�1175�AD 1

  2. A� (very) brief�history�of�permanent�magnets Print�of�1637 The�first�plant�in�China�manufacturing� magnetic�needles�for�compasses What�is�a�permanent�magnet? Permanent�magnet/hard�magnet – sample�with�a�net�magnetisation�(remanence� J r ) Soft�magnetic�material Hard�magnetic�material J H Classification�based�on�coercivity� H c (how�easily�the�material�can�be�demagnetised) 2

  3. Why�permanent�magnets? • Strong�fields�in�small�volumes • Compact • No�power • No�cooling Materials�for�high�performance�magnets: Nd$Fe$B�(room�temperature�applications) Sm$Co���(high�temp.�up�to� ≈ 350�°C) � brittle � low�corrosion�resistance� The�Walkman�circa�1905 3

  4. Progress�in�the�energy�product� Fe 3 O 4 ferrite Nd$Fe$B Year Intrinsic�magnetic�properties     T C� (K) K 1� (MJm $3 ) µ 0 M S� (T) highest�(BH) max Nd 2 Fe 14 B 585 4.9 1.60 SmCo 5 993 17 1.05 highest�operating�temp. high�corrosion�resistance, L1 0 FePt 750 6.6 1.43 mechanical�strength high�temperature�stability, AlNiCo 1133 0.04 1.20 high�corrosion�resistance low�cost�(!), BaFe 12 O 19 720 0.3 0.47 good�chem.�stability,� electrical�resistance� α $Fe 1043 0.05 2.16 4

  5. Extrinsic�magnetic�properties microstructure intrinsic = extrinsic + properties properties 100 µm > D > 1 nm saturation�polarisation� � � remanence� � � anisotropy�field� � � coercivity� � � energy�density� ���� ��� Curie�temperature� � � α -Fe Critical length (nm) Nd 2 Fe 14 B J or B δ w = (A/K 1 ) 1/2 3.9 30 J r or B r D c ~ µ 0 (A/K 1 ) 1/2 /J s 2 214 6 D c : critical single-domain particle size H c δ w : domain wall width δ δ δ δ w δ δ δ H c Critical lengths /�definition nanocrystalline? For�spherical�particles�with�uniaxial� 72 AK = 1 D [ Kittel 1949 ] anisotropy,�the�critical�single$domain� c µ 2 M diameter 0 s The�competition�between�exchange�and� magnetostatic�energy�$ exchange�length A = l (determines�the�grain�size�below�which�the� ex µ 2 M hysteresis�loops�of�multi$phase�magnets�show�a� 0 s single$magnetic$phase�behaviour) The�comparison�between�exchange�and�anisotropy� δ = $ wall$width�parameter A / K w 1 5

  6. Understanding�and�optimising�properties NON$MAGNETIC�PROPs MAGNETIC�PROPs � grain�size�(Km�or�nm) � intrinsic� ↔ extrinsic � texture � coercivity�mechanisms � hot�workability � intergrain coupling � temperature�stability� � magnetic�microstructure � chemical�stability PHASE�CHARACTERISATION PROCESSING � structure�identification � sintering � quantification � melt$spinning � (micro$)�chemistry � mechanical�alloying/milling � metastability � HDDR � transformation � (hot)�deformation � crystallographic relationships Nd$Fe$B�alloys Phase�diagram and�crystal structure Sintered�magnets Anisotropic�bonded�magnets�(HDDR) Hot�deformed�magnets 6

  7. Nd 2 Fe 14 B�phase Crystal�structure Space�group:�P4 2 /mnm 68�atoms�per�unit�cell a�=�8.8�Ǻ;�c�=�12.2 Ǻ c$axis� → easy�magnetisation axis Nd Fe B Nd$Fe$B�phase�diagram�(vertical�sections) [Landgraf 1990] [Schneider�1986] Φ =�Nd 2 Fe 14 B η =�Nd 1.1 Fe 4 B 4 1180�°C Above�685�°C� → liquid�phase� Nd 2 Fe 14 B:�very�narrow�homogeneity�range A�departure�from�the�stoichiometry ⇒ foreign�phases 7

  8. Prototypes�of�R 2 Fe 14 B$based�magnets 1,5 Type III 1,0 Polarisation J ( T ) 0,5 Type I Type II 0,0 -0,5 single-phase exchange-coupled -1,0 R-rich decoupled two-phase exchange-coupled -1,5 -4 -3 -2 -1 0 1 2 3 4 Applied field µ 0 H ( T ) ������ : decoupled�R 2 Fe 14 B grains�separated� H c by�thin�paramagnetic�layer ������� :�exchanged�coupled�grains�based�on� stoichiometric�R 2 Fe 14 B J r �������� : exchanged�coupled�grains�based�on� nanocomposite�R 2 Fe 14 B�/ α $Fe Principal�processing�routes� Magnetically highly anisotropic R-T-phases Coarse-grained powders Isotropic fine-grained powders (J R =J S /2) produced via hydrogen decrepitation + milling produced by: rapid quenching Alignment mechanical alloying intensive/reactive milling in magnetic field HDDR Densification J R > J S /2 by liquid phase sintering NdFeB SmCo highest (BH) max high operat. temp. Hot compaction isotropic, fully dense Remanence enhancement „Anisotropic“ HDDR Hot deformation isotropic exchange-coupled (textured bonded magnets one- or multi-phase structures after pre-alignment) axially/radially textured Highest (BH) max magnets O.�Gutfleisch,�J.�Phys.�D:�Appl.�Phys.� �� (2000)�R157. 8

  9. Sintering� Vacuum - Melting Casting Crushing 5$60� � m particles Milling H�~�10�kOe Aligning H P P Pressing isostatic die$press P P T Sintering/Annealing T� ≈ 1000 ✁ C t Machining/ Surface�treatment adapted from Magnetising H Vacuumschmelze GmbH Sintered�Nd$Fe$B�magnet (BH) max = 451 kJ/m 3 �� ��� �� � � � � η � ���� �� � � � real SEM (BSE� mode) �� � �� �� � (Φ) 10 µ m �������� 5µm Average�grain�size�~�5�mm ������������� ����� ideal �� � �� �� � 1 µ m 200 nm Very�thin�coating�of�2$14$1�grains� 5µm with�Nd$rich�intergranular phase �������� Nd$rich�intergranular phase 9

  10. Sintered�Nd$Fe$B�magnet 1,5 1,0 0,5 polarisation J (T) 0,0 -0,5 (BH) max =�53�MGOe -1,0 -1,5 -4 -2 0 2 4 applied field µ 0 H (T) VACODYM 722HR Microtexture and�domain�structure�of�anisotropic�magnet c-axis ⊥ ⊥ image plane ⊥ ⊥ c-axis II image plane BSE�image 10 µ m 10 µ m Orientation�mapping�and�texture�component Misorientation angle [deg.] Misorientation angle [deg.] Kerr�image 10 µ m 10 µ m 10

  11. Microtexture and�domain�structure�of�isotropic�magnet Backscattered�electron�image Kerr�image 10 µ m 10 µ m Orientation�mapping�and�texture�component Misorientation angle [deg.] Texture�evaluation:�sintered�NdFeB {001} {100} {111} Anisotropic�magnet�with� (BH) max =�56.7�MGOe B r� =�1.52�T Y0 <001> {100} {111} Vacodym 722� 5 commercial�grade�magnet� 10 15 B r� =�1.47�T X0 20 25 30 Isotropic�magnet� B r� =�0.78�T J.�Alloys�and�Comp.�365�(2004)�259 11

  12. Sintering� Vacuum - Melting Casting Crushing by�hydrogen�decrepitation Crushing 5$60� ✂ m particles Milling Aligning H P P Pressing isostatic die$press P P T Sintering/Annealing t Machining/ Surface�treatment adapted from Magnetising H Vacuumschmelze GmbH Hydrogen�decrepitation (HD)�process� Decrepitation → self$pulverisation�of�large�metal particles�into�powder 12

  13. Hydrogen�decrepitation (HD)�process� Crystallographic orientation Intergranular failure 4.5 hydrided powder conventional powder 4.0 grain size FSSS [ µ m] (A) 3.5 3.0 2.5 (I) 0 2 4 6 8 10 12 feed rate [kg/h] Hydrogen decrepitated anisotropic and� Beneficial effect of�HD�process on�feed isotropic sintered NdFeB magnets rate�in�a�jet mill comparing conventional and�hydrided powder Incorporation�of�small�amounts�of�H 2 into�Nd 2 Fe 14 B! Possible�reactions�of�R$T�compounds�with�H 2 amorphous crystalline R n T m H x R n T m H x II I intensity of at�RT Mechanical mechanical activation activation thermo$ R n T m +�H 2 kinetics dynamics temperature hydrogen pressure I���Interstitial absorption II��Amorphisation (HIA)* III III�Disproportionation elevated�T n RH x + m T Gutfleisch�et�al.�1999 Yeh et�al.,�APL�42�(1983)�242 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend