nambu and living world symmetry breaking and pattern
play

Nambu and Living World: Symmetry Breaking and Pattern Selection in - PowerPoint PPT Presentation

Nambu and Living World: Symmetry Breaking and Pattern Selection in Cellular Mosaic Formation Noriaki OGAWA ( ) [ RIKEN QHP Lab. / iTHES ] in collaboration with: Tetsuo Hatsuda ( ) [RIKEN Hatsuda QHP Lab. / iTHES]


  1. Nambu and Living World: Symmetry Breaking and Pattern Selection in Cellular Mosaic Formation Noriaki OGAWA ( 小 川 軌 明 ) [ RIKEN QHP Lab. / iTHES ] in collaboration with: Tetsuo Hatsuda ( 初 田 哲 男 ) [RIKEN Hatsuda QHP Lab. / iTHES] Atsushi Mochizuki ( 望 月 敦 史 ) [RIKEN Mochizuki Theo. Bio. Lab. / iTHES] Masashi Tachikawa ( 立 川 正 志 ) [RIKEN Mochizuki Theo. Bio. Lab. / iTHES] 2015 November 17 Osaka CTSR - Kavli IPMU - RIKEN iTHES International workshop “Nambu and Science Frontier”

  2. Symmetry Breaking cf.) Talks by Watanabe, Oda, Noumi

  3. Noriaki OGAWA (RIKEN) Cone Cellular Mosaic on Fish Retina [T. Allison, website] [Flamarique, Proc.B , 2012] [OIST Developmental Neurobiology (Masai) Unit, website]

  4. Noriaki OGAWA (RIKEN) Vertebrate Eye & Retina Retina Cone cells: B UV R G [Figure: from Wikipedia]

  5. Noriaki OGAWA (RIKEN) Mosaic of Cone Cells on Fish Retina Zebrafish type Medaka type [T. Allison, website] p4mg c2mm [Flamarique, Proc.B , 2012] [OIST Developmental Neurobiology (Masai) Unit, website]

  6. Conventional Model and SSB

  7. Noriaki OGAWA (RIKEN) 2D Physical Modeling [Tohya-Mochizuki-Iwasa, 1999] ● C e l l u l a r - l e v e l , S q u a r e - l a t t i c e M o d e l ( e x t e n d e d P o t t s m o d e l ) – 1 site is , or “double cone” B UV RG R G – Binding energies between neighborhoods (binding proteins on the membranes) B UV – Effective temperature for fluctuation

  8. Noriaki OGAWA (RIKEN) Reproduction of Zebrafish-pattern [TMI 1999] [Mochizuki 2002] 2 3 3 3 3 o 2 2 2 2 2 R G r 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 B UV 2 2 2 2 2 2 3 3 3 3 Metropolis Simulation (stochastic replacements) (Random Initial State)

  9. Noriaki OGAWA (RIKEN) Reproduction of Zebrafish-pattern [TMI 1999] [Mochizuki 2002] 2 3 3 3 3 o 2 2 2 2 2 R G r 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 B UV 2 2 2 2 2 2 3 3 3 3 Metropolis Simulation (stochastic replacements)

  10. Noriaki OGAWA (RIKEN) Reproduction of Zebrafish-pattern [TMI 1999] [Mochizuki 2002] 2 3 3 3 3 o 2 2 2 2 2 R G r 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 B UV 2 2 2 2 2 2 3 3 3 3 Metropolis Simulation (stochastic replacements) (Spontaneous Symmetry Breaking)

  11. Noriaki OGAWA (RIKEN) Selected Direction in Nature ? “rotated Zebrafish pattern” Zebrafish Central Marginal Growth

  12. Retina Growing Model and Analysis

  13. Noriaki OGAWA (RIKEN) Retinal Growth : Schematics D. A. Cameron and S. S. Easter (1993) Visual Neurosci. 10: 375-384 D. L. Stenkamp et al. (1997) J. Comp. Neurol. 382: 272-284

  14. Noriaki OGAWA (RIKEN) Retinal Growth : Modeling Edge of retina “front-end” “new-layer” “Pool” of cone cells

  15. Noriaki OGAWA (RIKEN) Markov-Chain of Layers w ● P r o b . d i s t r i b u t i o n o f 1 l a y e r o f c e l l s – 6 states for 1 cell: – P i distribution for 6 w states Transition Matrix Markov-chain Inter-layer Layer-internal

  16. Noriaki OGAWA (RIKEN) Transition Matrix around T=0 Fluctuation term from T>0 Rotated Wild-type

  17. Noriaki OGAWA (RIKEN) Multi-stability at T=0 ? Wild-type (1) Wild-type (2) Rotated Grow

  18. Noriaki OGAWA (RIKEN) Growth of “Rotated” at T>0 ? Typical one-shot simulation: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ( w = 16 , T=0.5)

  19. Noriaki OGAWA (RIKEN) Growth of “Rotated” at T>0 ? Typical one-shot simulation: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ( w = 16 , T=0.5)

  20. Noriaki OGAWA (RIKEN) Growth of “Rotated” at T>0 ? Typical one-shot simulation: 0 Rotated zebrafish 1 2 3 4 5 6 7 Dynamical 8 transition process 9 10 11 12 13 14 15 16 17 Wild zebrafish 18 19 20 ( w = 16 , T=0.5)

  21. Noriaki OGAWA (RIKEN) Monte-Carlo results “Agreement rates” along with growth From rotated pattern From random configuration I ( n ) I ( n ) ▲ ▲ ▲ 1.0 ● ● 1.0 ●● ● ● ● ●●●● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●● ●● ● ▲ ● ● ●● ● ● ● ●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● 0.8 ● ● ● ●● ● ● ● ● ● ● ● ● ● ● 0.8 ● ● ● ● ● ● ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ▲ ● ▲ ● ● ● ● ● ▲ ● ● ● ● ● ● ● ● 0.6 ● 0.6 ▲ ● ▲ ● ● ▲ ▲ ● ▲ ● ▲ ● ▲ ▲ ● ● 0.4 ● 0.4 ▲ ▲ ▲ ● ▲ ● ▲ ● ▲ ▲ ▲ ▲ 0.2 0.2 ▲ ● ● ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ● ● ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ● ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲ ● ● ● 50 n ▲ ▲ ▲ ▲ ▲▲ ▲ 50 n ▲ 10 20 30 40 10 20 30 40 T=0.4 T=0.5 T=0.65 ( w = 16)

  22. Noriaki OGAWA (RIKEN) Eigen-spectrum of Transition Matrix (w = 4, T=0.5) Rotated Wild-type 1 0.2426 0.2426 0.2426 0.2426 0.00047 0.00045 0.00047 0.00045 -0.948 1 -1 -0.225 0.225 97% -0.948 -0.504 0.504 1 -1 0.910 1 1 -1 -1 0.865 -1 -1 -1 -1 0.8319 0.8076 0.8319 0.8076 0.864i 1 -0.97 i -1 0.97 i -0.864i 1 0.97 i -1 -0.97 i -0.863 0.024 0.024 0.024 0.024 1 -0.971 1 -0.971 0.321 1 1 1 1 0.0764 0.014 0.0764 0.014 …

  23. Pattern Selection Mechanism from Toy-Model

  24. Noriaki OGAWA (RIKEN) Directional Assymmetry of Bindings ? “rotated Zebrafish pattern” Zebrafish 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 R G 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 B UV 2 Horizontal (intra-layer) Vertical (inter-layer) bindings stronger bindings stronger

  25. Noriaki OGAWA (RIKEN) Simplified Toy-Model 2-states model Pattern α: AAAAA... Pattern β: BBBBB... Fluctuations U A A A U A B U B B U B V AA V AA V BB V BB A A B B U A U A U B U B V AA V BB V BA V BA A U A U B B B U B A U A V AA V BB V BB V AA A B B A U A U B U B U A U A + V BA = W = > U A + V AA U B + V BB U A + V AB

  26. Noriaki OGAWA (RIKEN) Simplified Toy-Model: fluctuations 2-states model Pattern α: AAAAA... Pattern β: BBBBB... Fluctuations

  27. Noriaki OGAWA (RIKEN) Intra-layer Energy governs Stability Fluctuations Eigen-spectrum Stationary distribution Larger layer-internal energy is favored.

  28. Noriaki OGAWA (RIKEN) Same Mechanism Working ? “rotated Zebrafish pattern” Zebrafish 2 R G 3 3 B UV 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 >

  29. Noriaki OGAWA (RIKEN) Summary ● P h y s i c a l m o d e l i n g o f growing retina. – E x p r e s s e d b y M a r k o v - c h a i n D y n a m i c a l S y s t e m . – Seed for symmetry breaking ● Only “Wild-type” pattern can survive. – “Dynamical selection” between two patterns with same static energy. – Agreement with observation in real animals. Thanks!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend