muon g 2 a theoretical review tau04 nara september 2004
play

Muon g-2 : a theoretical review Tau04 Nara, September 2004 Andrzej - PowerPoint PPT Presentation

Muon g-2 : a theoretical review Tau04 Nara, September 2004 Andrzej Czarnecki University of Alberta Outline QED: present and future ( T. Kinoshita ) Electroweak loops Hadronic effects * vacuum polarization ( J. Khn, S. Eidelman, D.


  1. Muon g-2 : a theoretical review Tau04 Nara, September 2004 Andrzej Czarnecki University of Alberta

  2. Outline QED: present and future ( T. Kinoshita ) Electroweak loops Hadronic effects * vacuum polarization ( J. Kühn, S. Eidelman, D. Leone, M. Davier, B. Schwarz, K. Hagiwara ) * light-by-light scattering Summary and outlook

  3. Muon g-2 : Standard Model update Units: 10 -11 QED 116 584 719 (1) hep-ph/0402206 hadrons Hadronic LO 6 963 (72) hep-ph/0308213 NLO − 98 (1) hep-ph/0312250 LBL 120 (40) tentative, see hep-ph/0312226 Electroweak 154 (3) hep-ph/0212229 Z Total SM 116 591 858 (82) Experiment − SM Theory = 222 (102) (2.2 σ deviation)

  4. Muon g-2 : new data Brookhaven, January 2004: µ - measurement. − − = ± ⋅ exp SM 11 222 102 10 a a µ µ → σ 2.2 (based on e+e-) − − = ± ⋅ exp SM 11 123 89 10 a a µ µ → σ 1.4 (tau) from A. Vainshtein

  5. QED contributions: muon vs. electron m e g g m e g g Enhancement factors: m m 2 ln µ µ π ln n n m m e e Leading five-loop effects must be included!

  6. QED contributions: problems at 4-loop order Traditional approach (T. Kinoshita and M. Nio (Nara)): numerical problems, digit deficiency New approach (various groups, in progress): Combine numerical and algebraic methods Reduce all integrals to a smaller basis Evaluate the primitive integrals numerically, with high accuracy.

  7. Example: integration by parts a 1 k p a 2 1 ( ) ∫ = , D J a a d k ( ) ( ) 1 2 a a + 2 1 2 2 2 k k kp ∂ 1 ∫ = 0 D p d k k ( ) ( ) µ ∂ a a + 2 2 1 2 2 k k kp µ

  8. New approach to the QED part Obstacles: Very large number of integrals Reduction to primitive integrals Evaluation of master integrals Recent progress: algorithmic reduction (Laporta, 2001)

  9. Electroweak effects: pure and hadronic Small part of the total g-2: 154(3)×10 -11 2 5 G m µ µ ( -1 +2) ⋅ π 2 24 2 − ⋅ 11 � 195 10

  10. Higher-order electroweak effects Most important: photonic corrections → large logs α 2 Kukhto et al. M − 2 ln ∼ 23% of one-loop W AC, Krause, Marciano G m µ µ π 2 Heinemaier, Stockinger, Weiglein m µ

  11. Muon g-2 : hadronic loops Hadronic effects dominate theoretical uncertainty: Vacuum polarization Light-by-light scattering Electroweak triangle diagrams (numerically small)

  12. Electroweak-hadronic effects Large logs ln(m µ /M Z ) appear in individual fermion contributions; But cancel in the sum for each generation – like anomalies. This cancellation between leptons and hardons was contoversial. AC, Marciano, Vainshtein vs. Knecht, Peris, Perrottet, de Rafael Useful illustration: similar techniques used in light-by-light

  13. Structure of the triangle V A µ ν q external V ) ( ) ) ( ) ( ( � � � � σ σ σ − + − + 2 2 2 ∼ w q q F q q F q q F w q q q F µν µ σν ν σµ ν σµ T L Perturbative result: 1 = 2 ∼ w w 2 L T q Anomaly: µν ≠ 2 ∼ 0 q T q w ν L µν = 0 q T µ

  14. Vainshtein’s non-renormalization theorem for w T V A µ ν q ) ( ) ) ( ) ( ( � � � � σ σ σ − + − + 2 2 2 ∼ T w q q F q q F q q F w q q q F µν µν µ σν ν σµ ν σµ T L In the chiral limit, w T has no perturbative corrections Idea of the proof: � � (symmetric) σ + σ Im T ∼ q q F q q F µν µ σν ν σµ ( ) ( ) Guidance from one-loop = 2 2 2 w q w q calculations! T L

  15. w T,L in QCD (chiral limit) 2 Perturbative: = = ≡ − 2 2 2 w w Q q 2 L T Q Non-perturbative: Large Q 2 Small Q 2 2 2 (pion pole) w 2 2 L Q Q ( ) ⎛ ⎞ 4 2 − 2 − 2 2 ⎛ ⎞ 0.7G eV 1 1 1 m m m m π ρ π − + − ⎜ ⎟ a ⎜ ⎟ 1 w O ⎜ ⎟ − + + 2 6 8 2 2 2 2 2 2 T ⎝ ⎠ Q Q Q m m Q m Q m ⎝ ⎠ ρ ρ a a 1 1 (model for w T )

  16. Contributions to g-2 2 ∞ 2 ⎛ ⎞ α 2 ⎛ ⎞ m M ∫ µ ∆ + 2 ∼ ⎜ Z ⎟ ⎜ ⎟ a dQ w w µ π + 2 2 2 L T ⎝ ⎠ ⎝ ⎠ M M Q 2 Z Z m µ Asymptotics: 1 ∑ 2 ⎯⎯⎯ →∞ → 2 Q w I N Q , 3 2 T L f f f Q f ∞ theory inconsistent ∫ 2 : diverges dQ w unless anomalies cancel L ∞ 2 M ∫ 2 2 ∼ ln Z dQ w M + 2 2 T Z M Q Z

  17. “Pure” hadronic contributions Recent progress Updated studies of g-2 using e + e - data Davier, Eidelman, Höcker, Zhang Hagiwara, Martin, Nomura, Teubner Novosibirsk results tested by Daphne See talks by Kühn, Leone, Shwartz Shift of the light-by-light prediction Melnikov and Vainshtein

  18. Vacuum polarization: τ decays vs. e + e – From M. Davier, A. Hoecker

  19. Vacuum polarization: e + e – e + e – data have greatly |F π | 2 |F π | 2 improved — KLOE — KLOE 40 40 New results from KLOE • CMD2 • CMD2 confirm Novosibirsk CMD2 30 30 20 20 From A. Denig 10 10 0 0 0 0 0.5 0.5 0.7 0.7 0.9 0.9 2 2 2 2 M M ( ( GeV GeV ) ) ππ ππ

  20. Hadronic contributions: outstanding problems How to reconcile e + e - and τ data? Can we improve the light-by-light prediction?

  21. Light-by-light scattering Recent evaluations: Knecht, Nyffeler 80(40) Hayakawa, Kinoshita 90(15) Bijnens, Pallante, Prades 83(32) Melnikov, Vainshtein 136(25)

  22. Effects enhanced by N c Quark box: pQCD asymptotics Axial + → The same structure as in the EW-hadronic loops. Dominant contribution: π 0 pole Crucial observation: 1/Q 2 asymptotics → no formfactor in π * γ * γ if one of the photons soft. ( ) ∆ + ⋅ ⋅ − PS 11 � 76.5 2 18 10 a µ ∆ ⋅ − PV 11 � 22 10 a µ

  23. What about terms subleading in N c ? Example: pion box. 2 2 It is chirally enhanced, / m m µ π Numerical effect: small. Previous estimates: -4.5(8.5)×10 -11 HLS Hayakawa, Kinoshita, Sanda -19(5)×10 -11 VMD Bijnens, Pallante, Prades Melnikov & Vainshtein: 0±10×10 -11 (cancellations with higher orders in the chiral expansion)

  24. Summary on the light-by-light scattering Matching of hadronic model with From Melnikov and Vainshtein perturbative QCD, at asymptotic momentum transfer. Large contribution of high virtualities. Dominant in N c →∞ : pion pole Still room for improvement: subleading terms

  25. α Pomeranchuk and Sakharov on g-2= π If this is true, it’s exceptionally important; if it isn’t true, that, too, is exceptionally important. (Pomeranchuk after Sakharov’s talk, 1949) I felt like the messenger of the gods . (Sakharov)

  26. How do we determine g-2? − 2 g e ω = Measure B a 2 m µ µ 2 B ω = from NMR: p B p � � e e µ ≡ from g µ 4 m m µ µ Measured by E821 ω ω − / 2 g = Master formula: a p µ µ − ω ω 2 / / µ p a p From muonium

  27. Muonium spectrum determines µ µ /µ p U + µ ν 12 ν 34 _ e B ν − ν µ ⇒ µ µ ∼ / B µ µ 34 12 p Measured to relative 1.2•10 -7 (like 15•10 -11 in a µ ) Will need improvement for the “next g-2” Mu: also m µ /m e and tests of QED

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend