multiplier tricks for spectral convergence
play

Multiplier tricks for spectral convergence Sabine B ogli (Imperial - PowerPoint PPT Presentation

Numerical ranges and essential numerical ranges Spectral approximation Multiplier tricks for spectral convergence Sabine B ogli (Imperial College London) Re 15 10 5 5 10 15 Quantissima III Venice, 19 August 2019 Based on joint


  1. Numerical ranges and essential numerical ranges Spectral approximation Multiplier tricks for spectral convergence Sabine B¨ ogli (Imperial College London) Re � 15 � 10 � 5 5 10 15 Quantissima III Venice, 19 August 2019 Based on joint work with M. Marletta (Cardiff): Essential numerical ranges for linear operator pencils . To appear in IMA Journal of Numerical Analysis . Sabine B¨ ogli (Imperial) Multiplier tricks

  2. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let { e k : k ∈ N } be standard ONB of l 2 ( N ) . Consider T with matrix representation �� � � − n 0 : n ∈ N = diag( − 1 , 1 , − 2 , 2 , − 3 , 3 , . . . ) . diag 0 n Re � 15 � 10 � 5 5 10 15 Sabine B¨ ogli (Imperial) Multiplier tricks

  3. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let { e k : k ∈ N } be standard ONB of l 2 ( N ) . Consider T with matrix representation �� � � − n 0 : n ∈ N = diag( − 1 , 1 , − 2 , 2 , − 3 , 3 , . . . ) . diag 0 n Re � 15 � 10 � 5 5 10 15 Compress to V n := span { e k : k = 1 , . . . , 2 n } , n ∈ N � spectral convergence. Sabine B¨ ogli (Imperial) Multiplier tricks

  4. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let { e k : k ∈ N } be standard ONB of l 2 ( N ) . Consider T with matrix representation �� � � − n 0 : n ∈ N = diag( − 1 , 1 , − 2 , 2 , − 3 , 3 , . . . ) . diag 0 n Re � 15 � 10 � 5 5 10 15 Compress to V n := span { e k : k = 1 , . . . , 2 n } , n ∈ N � spectral convergence. Let λ ∈ R \ σ ( T ) . Change ONB: span { e 2 n − 1 , e 2 n } = span { f n , g n } , f n := cos( θ n ) e 2 n − 1 + sin( θ n ) e 2 n , θ n := λ 2 n − π with 4 . g n := − sin( θ n ) e 2 n − 1 + cos( θ n ) e 2 n , Sabine B¨ ogli (Imperial) Multiplier tricks

  5. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let { e k : k ∈ N } be standard ONB of l 2 ( N ) . Consider T with matrix representation �� � � − n 0 : n ∈ N = diag( − 1 , 1 , − 2 , 2 , − 3 , 3 , . . . ) . diag 0 n Re � 15 � 10 � 5 5 10 15 Compress to V n := span { e k : k = 1 , . . . , 2 n } , n ∈ N � spectral convergence. Let λ ∈ R \ σ ( T ) . Change ONB: span { e 2 n − 1 , e 2 n } = span { f n , g n } , f n := cos( θ n ) e 2 n − 1 + sin( θ n ) e 2 n , θ n := λ 2 n − π with 4 . g n := − sin( θ n ) e 2 n − 1 + cos( θ n ) e 2 n , Then compression to H n := V n − 1 ⊕ span { f n } has eigenvalue λ n := � Tf n , f n � = n sin( λ/n ) → λ / ∈ σ ( T ) . So λ is a spurious eigenvalue (point of spectral pollution). Sabine B¨ ogli (Imperial) Multiplier tricks

  6. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let �� � � �� � � n 0 − 1 0 : n ∈ N : n ∈ N A := BT = diag , B := diag . 0 n 0 1 � ( T − λ ) f = 0 ⇐ ⇒ ( A − λB ) f = 0 (eigenvalue problem for linear pencil). Sabine B¨ ogli (Imperial) Multiplier tricks

  7. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let �� � � �� � � n 0 − 1 0 : n ∈ N : n ∈ N A := BT = diag , B := diag . 0 n 0 1 � ( T − λ ) f = 0 ⇐ ⇒ ( A − λB ) f = 0 (eigenvalue problem for linear pencil). ◮ Introduce essential numerical range W e ( T ) � contains all possible spurious eigenvalues obtained by projection methods. Here: W e ( T ) = R . Sabine B¨ ogli (Imperial) Multiplier tricks

  8. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let �� � � �� � � n 0 − 1 0 : n ∈ N : n ∈ N A := BT = diag , B := diag . 0 n 0 1 � ( T − λ ) f = 0 ⇐ ⇒ ( A − λB ) f = 0 (eigenvalue problem for linear pencil). ◮ Introduce essential numerical range W e ( T ) � contains all possible spurious eigenvalues obtained by projection methods. Here: W e ( T ) = R . ◮ Introduce essential numerical range W e ( A, B ) � contains all possible spurious eigenvalues obtained by projection methods. Here: W e ( A, B ) = ∅ . Sabine B¨ ogli (Imperial) Multiplier tricks

  9. Numerical ranges and essential numerical ranges Spectral approximation Motivation Let �� � � �� � � n 0 − 1 0 : n ∈ N : n ∈ N A := BT = diag , B := diag . 0 n 0 1 � ( T − λ ) f = 0 ⇐ ⇒ ( A − λB ) f = 0 (eigenvalue problem for linear pencil). ◮ Introduce essential numerical range W e ( T ) � contains all possible spurious eigenvalues obtained by projection methods. Here: W e ( T ) = R . ◮ Introduce essential numerical range W e ( A, B ) � contains all possible spurious eigenvalues obtained by projection methods. Here: W e ( A, B ) = ∅ . In example: no spectral pollution occurs if we calculate eigenvalues λ n given by ( A H n − λ n B H n ) f n = 0 . Sabine B¨ ogli (Imperial) Multiplier tricks

  10. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Numerical ranges for operators and linear operator pencils Let H be a Hilbert space and let A be a linear operator in H . Recall: The numerical range of A is the convex set W ( A ) = {� Af, f � : f ∈ D ( A ) , � f � = 1 } . Then σ app ( A ) ⊆ W ( A ) with σ app ( A ) := { λ ∈ C : ∃ ( f n ) n ∈ N ⊂ D ( A ) , � f n � = 1 , � ( A − λ ) f n � → 0 } . Sabine B¨ ogli (Imperial) Multiplier tricks

  11. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Numerical ranges for operators and linear operator pencils Let H be a Hilbert space and let A be a linear operator in H . Recall: The numerical range of A is the convex set W ( A ) = {� Af, f � : f ∈ D ( A ) , � f � = 1 } . Then σ app ( A ) ⊆ W ( A ) with σ app ( A ) := { λ ∈ C : ∃ ( f n ) n ∈ N ⊂ D ( A ) , � f n � = 1 , � ( A − λ ) f n � → 0 } . Now study linear pencil λ �→ A − λB with B another linear operator. Define σ ( A, B ) := { λ ∈ C : 0 ∈ σ ( A − λB ) } (and various parts analogously) and � � λ ∈ C : 0 ∈ W ( A − λB ) W ( A, B ) := . Then σ app ( A, B ) ⊆ W ( A, B ) . Sabine B¨ ogli (Imperial) Multiplier tricks

  12. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Essential numerical ranges for operators and linear operator pencils The essential numerical range of A is the convex set � � w W e ( A ) = n →∞ � Af n , f n � : f n ∈ D ( A ) , � f n � = 1 , f n lim → 0 . Then σ e ( A ) ⊆ W e ( A ) ⊆ W ( A ) with w σ e ( A ) := { λ ∈ C : ∃ ( f n ) n ∈ N ⊂ D ( A ) , � f n � = 1 , f n → 0 , � ( A − λ ) f n � → 0 } . Sabine B¨ ogli (Imperial) Multiplier tricks

  13. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Essential numerical ranges for operators and linear operator pencils The essential numerical range of A is the convex set � � w W e ( A ) = n →∞ � Af n , f n � : f n ∈ D ( A ) , � f n � = 1 , f n lim → 0 . Then σ e ( A ) ⊆ W e ( A ) ⊆ W ( A ) with w σ e ( A ) := { λ ∈ C : ∃ ( f n ) n ∈ N ⊂ D ( A ) , � f n � = 1 , f n → 0 , � ( A − λ ) f n � → 0 } . For linear pencils: � � W e ( A, B ) := λ ∈ C : 0 ∈ W e ( A − λB ) . Then σ e ( A, B ) ⊆ W e ( A, B ) ⊆ W ( A, B ) . Sabine B¨ ogli (Imperial) Multiplier tricks

  14. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Essential numerical range FOR OPERATORS ◮ W e ( T ) is closed and convex with W e ( T ) ⊇ conv( σ e ( T )) . Sabine B¨ ogli (Imperial) Multiplier tricks

  15. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Essential numerical range FOR OPERATORS ◮ W e ( T ) is closed and convex with W e ( T ) ⊇ conv( σ e ( T )) . ◮ Salinas (1972): T bounded and hypo-normal ( T ∗ T − TT ∗ ≥ 0 ) = ⇒ W e ( T ) = conv( σ e ( T )) . Sabine B¨ ogli (Imperial) Multiplier tricks

  16. Numerical ranges and essential numerical ranges Definition and basic properties of numerical ranges Spectral approximation Definition and basic properties of essential numerical ranges Essential numerical range FOR OPERATORS ◮ W e ( T ) is closed and convex with W e ( T ) ⊇ conv( σ e ( T )) . ◮ Salinas (1972): T bounded and hypo-normal ( T ∗ T − TT ∗ ≥ 0 ) = ⇒ W e ( T ) = conv( σ e ( T )) . ◮ With Marletta and Tretter: If T is selfadjoint and unbounded, then W e ( T ) = conv( � σ e ( T )) \{±∞} , where the extended essential spectrum � σ e ( T ) is defined as σ e ( T ) with −∞ ( + ∞ ) added if T is unbounded below (above). Sabine B¨ ogli (Imperial) Multiplier tricks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend