multi configurational dft by long range short range
play

Multi-configurational DFT by long-range/short-range separation of - PowerPoint PPT Presentation

Multi-configurational DFT by long-range/short-range separation of the electron-electron interaction Julien Toulouse, Franc ois Colonna, Andreas Savin Laboratoire de Chimie Th eorique, Universit e Pierre et Marie Curie, Paris COST 2004


  1. Multi-configurational DFT by long-range/short-range separation of the electron-electron interaction Julien Toulouse, Franc ¸ois Colonna, Andreas Savin Laboratoire de Chimie Th´ eorique, Universit´ e Pierre et Marie Curie, Paris COST 2004 – p. 1/12

  2. Introduction Electronic correlation can be treated by DFT Wave function methods COST 2004 – p. 2/12

  3. Introduction Electronic correlation can be treated by DFT Wave function methods • “dynamical” correlation effects are • a long expansion of determinants is well treated needed to treat “dynamical” correla- tion COST 2004 – p. 2/12

  4. Introduction Electronic correlation can be treated by DFT Wave function methods • “dynamical” correlation effects are • a long expansion of determinants is well treated needed to treat “dynamical” correla- tion • near-degeneracy is not explicitly • near-degeneracy is easily treated treated COST 2004 – p. 2/12

  5. Introduction Electronic correlation can be treated by DFT Wave function methods • “dynamical” correlation effects • a long expansion of determinants is are well treated needed to treat “dynamical” correla- tion • near-degeneracy is not explicitly • near-degeneracy is easily treated treated = ⇒ Combination of the two approaches to take advantage of both of them. COST 2004 – p. 2/12

  6. Adiabatic connection � ˆ T + ˆ � E KS V KS | Φ � = E KS | Φ � E COST 2004 – p. 3/12

  7. Adiabatic connection � ˆ T + ˆ � E KS V KS | Φ � = E KS | Φ � � ˆ T + ˆ V ee + ˆ � V ne | Ψ � = E | Ψ � E COST 2004 – p. 3/12

  8. Adiabatic connection Continuously switching on the electron-electron interaction ˆ V µ ee according to a parameter µ at constant density n � ˆ T + ˆ � E KS V KS | Φ � = E KS | Φ � � ˆ T + ˆ V ee + ˆ � V ne | Ψ � = E | Ψ � E µ → ∞ µ = 0 COST 2004 – p. 3/12

  9. Adiabatic connection Continuously switching on the electron-electron interaction ˆ V µ ee according to a parameter µ at constant density n � ˆ T + ˆ � E KS V KS | Φ � = E KS | Φ � � ˆ T + ˆ ee + ˆ V µ V µ � | Ψ µ � = E µ | Ψ µ � E µ � ˆ T + ˆ V ee + ˆ � V ne | Ψ � = E | Ψ � E µ µ → ∞ µ = 0 COST 2004 – p. 3/12

  10. Adiabatic connection Continuously switching on the electron-electron interaction ˆ V µ ee according to a parameter µ at constant density n � ˆ T + ˆ � E KS V KS | Φ � = E KS | Φ � V µ = � ˆ i v µ ( r i ) � ˆ T + ˆ ee + ˆ V µ V µ � | Ψ µ � = E µ | Ψ µ � E µ � ˆ T + ˆ V ee + ˆ � V ne | Ψ � = E | Ψ � E µ µ → ∞ µ = 0 COST 2004 – p. 3/12

  11. Ground-state electronic energy • Mono-determinantal DFT � � � Φ | ˆ T + ˆ E = min V ne | Φ � + U [ n Φ ] + E xc [ n Φ ] Φ • Multi-determinantal DFT � � � Ψ | ˆ T + ˆ ee + ˆ V ne | Ψ � + ¯ U µ [ n Ψ ] + ¯ V µ E µ E = min xc [ n Ψ ] Ψ COST 2004 – p. 4/12

  12. Ground-state electronic energy • Mono-determinantal DFT � � � Φ | ˆ T + ˆ E = min V ne | Φ � + U [ n Φ ] + E xc [ n Φ ] Φ • Multi-determinantal DFT � � � Ψ | ˆ T + ˆ ee + ˆ V ne | Ψ � + ¯ U µ [ n Ψ ] + ¯ V µ E µ E = min xc [ n Ψ ] Ψ E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] COST 2004 – p. 4/12

  13. Ground-state electronic energy • Mono-determinantal DFT � � � Φ | ˆ T + ˆ E = min V ne | Φ � + U [ n Φ ] + E xc [ n Φ ] Φ • Multi-determinantal DFT � � � Ψ | ˆ T + ˆ ee + ˆ V ne | Ψ � + ¯ U µ [ n Ψ ] + ¯ V µ E µ E = min xc [ n Ψ ] Ψ E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] - Ψ µ is the multi-determinantal ground-state wave function of ˆ T + ˆ ee + ˆ V µ V µ COST 2004 – p. 4/12

  14. Ground-state electronic energy • Mono-determinantal DFT � � � Φ | ˆ T + ˆ E = min V ne | Φ � + U [ n Φ ] + E xc [ n Φ ] Φ • Multi-determinantal DFT � � � Ψ | ˆ T + ˆ ee + ˆ V ne | Ψ � + ¯ U µ [ n Ψ ] + ¯ V µ E µ E = min xc [ n Ψ ] Ψ E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] - Ψ µ is the multi-determinantal ground-state wave function of ˆ T + ˆ ee + ˆ V µ V µ - ¯ U µ [ n ] = U [ n ] − U µ [ n ] is the complement Hartree energy - ¯ E µ xc [ n ] = E xc [ n ] − E µ xc [ n ] is the complement exchange-correlation energy COST 2004 – p. 4/12

  15. Long-range/short-range separation ˆ � V µ v µ ee = ee ( r ij ) : long-range part of the Coulomb interaction i<j COST 2004 – p. 5/12

  16. Long-range/short-range separation ˆ � V µ v µ ee = ee ( r ij ) : long-range part of the Coulomb interaction i<j E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] ¯ E µ • xc [ n ] : short-range interaction ⇒ well approximated by (semi-)local approximations COST 2004 – p. 5/12

  17. Long-range/short-range separation ˆ � V µ v µ ee = ee ( r ij ) : long-range part of the Coulomb interaction i<j E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] ¯ E µ • xc [ n ] : short-range interaction ⇒ well approximated by (semi-)local approximations • Ψ µ : reduced interaction ⇒ well approximated by a few determinants corresponding to the near-degenerate states COST 2004 – p. 5/12

  18. Possible long-range interactions • erf interaction: ee ( r ) = erf( µr ) v µ r 3 µ = 1 1 /r 2.5 2 1 /µ 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 r COST 2004 – p. 6/12

  19. Possible long-range interactions • erf interaction: • erfgau interaction: ee ( r ) = erf( µr ) ee ( r ) = erf(˜ µr ) − 2˜ µ µ 2 r 2 √ π e − 1 v µ v ˜ µ 3 ˜ r r For comparison, ˜ µ ≈ 3 µ 3 µ = 1 1 /r 2.5 2 1 /µ 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 r COST 2004 – p. 6/12

  20. The exchange-correlation functional ¯ xc [ n ] E µ • The short-range functional ¯ E µ xc [ n ] can be divided as ¯ xc [ n ] = ¯ x [ n ] + ¯ E µ E µ E µ c [ n ] COST 2004 – p. 7/12

  21. The exchange-correlation functional ¯ xc [ n ] E µ • The short-range functional ¯ E µ xc [ n ] can be divided as ¯ xc [ n ] = ¯ x [ n ] + ¯ E µ E µ E µ c [ n ] • Local density approximation (LDA) for ¯ E µ xc [ n ] : � ¯ E µ ε unif ,µ xc [ n ] = n ( r )¯ ( n ( r )) d r xc ε unif ,µ ¯ ( n ) : short-range exchange-correlation energy per particle of a xc uniform electron gas with modified interaction COST 2004 – p. 7/12

  22. The exchange-correlation functional ¯ xc [ n ] E µ Performance of the LDA for the Be atom: Short-range exchange energy ¯ E µ x [ n ] 0 erf � 0.5 � 1 �� Μ E � 1.5 x � 2 exact LDA � 2.5 0 2 4 6 8 Μ COST 2004 – p. 8/12

  23. The exchange-correlation functional ¯ xc [ n ] E µ Performance of the LDA for the Be atom: Short-range exchange energy ¯ E µ x [ n ] 0 erf � 0.5 � 1 �� Μ E � 1.5 x erfgau � 2 exact LDA exact � 2.5 LDA 0 2 4 6 8 Μ COST 2004 – p. 8/12

  24. The exchange-correlation functional ¯ xc [ n ] E µ Performance of the LDA for the Be atom: Short-range exchange energy ¯ Short-range correlation energy ¯ E µ E µ x [ n ] c [ n ] 0 0 erf erf � 0.5 � 0.05 � 1 � 0.1 �� �� Μ Μ E E � 1.5 x c erfgau � 0.15 exact � 2 exact LDA LDA � 0.2 exact � 2.5 LDA 0 2 4 6 8 0 2 4 6 8 Μ Μ COST 2004 – p. 8/12

  25. The exchange-correlation functional ¯ xc [ n ] E µ Performance of the LDA for the Be atom: Short-range exchange energy ¯ Short-range correlation energy ¯ E µ E µ x [ n ] c [ n ] 0 0 erf erf � 0.5 � 0.05 � 1 � 0.1 �� �� Μ Μ erfgau E E � 1.5 x c erfgau � 0.15 exact � 2 exact LDA LDA � 0.2 exact exact � 2.5 LDA LDA 0 2 4 6 8 0 2 4 6 8 Μ Μ COST 2004 – p. 8/12

  26. The exchange-correlation functional ¯ xc [ n ] E µ Performance of the LDA for the Be atom: Short-range exchange energy ¯ Short-range correlation energy ¯ E µ E µ x [ n ] c [ n ] 0 0 erf erf � 0.5 � 0.05 � 1 � 0.1 �� �� Μ Μ erfgau E E � 1.5 x c erfgau � 0.15 exact � 2 exact LDA LDA � 0.2 exact exact � 2.5 LDA LDA 0 2 4 6 8 0 2 4 6 8 Μ Μ Asymptotic expansions for µ → ∞ : x [ n ] ≈ − A c [ n ] ≈ B � � ¯ ¯ E µ n ( r ) 2 d r + · · · E µ n 2 ,c ( r , r ) d r + · · · µ 2 µ 2 COST 2004 – p. 8/12

  27. Ground-state electronic energy of the Be atom E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] COST 2004 – p. 9/12

  28. Ground-state electronic energy of the Be atom E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] CI in limited configurational spaces COST 2004 – p. 9/12

  29. Ground-state electronic energy of the Be atom E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] CI in limited configurational spaces LDA COST 2004 – p. 9/12

  30. Ground-state electronic energy of the Be atom E = � Ψ µ | ˆ T + ˆ ee + ˆ V ne | Ψ µ � + ¯ U µ [ n ] + ¯ V µ E µ xc [ n ] CI in limited configurational spaces LDA � 14.35 � 14.4 � 14.45 � 14.5 E � 14.55 erf 1s2s � 14.6 � 14.65 exact 0 2 4 6 8 Μ COST 2004 – p. 9/12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend