configurational bias monte carlo
play

Configurational-Bias Monte Carlo N interacting particles in volume V - PDF document

Configurational-Bias Monte Carlo Thijs J.H. Vlugt [1] Random Sampling versus Metropolis Sampling (1) Configurational-Bias Monte Carlo N interacting particles in volume V at temperature T Thijs J.H. Vlugt Professor and Chair Engineering


  1. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [1] Random Sampling versus Metropolis Sampling (1) Configurational-Bias Monte Carlo N interacting particles in volume V at temperature T Thijs J.H. Vlugt Professor and Chair Engineering Thermodynamics Delft University of Technology Delft, The Netherlands t.j.h.vlugt@tudelft.nl January 16, 2018 • vector representing positions of all particles in the system: r N • total energy: U ( r N ) • statistical weight of configuration r N is exp[ − βU ( r N )] with β = 1 / ( k B T ) Configurational-Bias Monte Carlo Thijs J.H. Vlugt [2] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [3] Random Sampling versus Metropolis Sampling (2) Random Sampling versus Metropolis Sampling (3) N interacting particles in volume V at temperature T Computing the ensemble average �· · · � of a certain quantity A ( r N ) pair interactions u ( r ij ) • Random Sampling of r N : � n i =1 A ( r N � − βU ( r N � i ) exp i ) � A � = lim � n � − βU ( r N � n →∞ i =1 exp i ) Usually this leads to � A � = “ 0 ” / “ 0 ” = ??? • Metropolis sampling; generate n configurations r N with probability proportional � − βU ( r N � N − 1 N to exp i ) , therefore: U ( r N ) � � � = u ( r ij ) = u ( r ij ) i =1 j = i +1 i<j � n i =1 A ( r N i ) � A � = lim 1 � d r N exp − βU ( r N ) n Q ( N, V, T ) = � � n →∞ Λ 3 N N ! F ( N, V, T ) = − k B T ln Q ( N, V, T )

  2. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [4] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [5] Simulation Technique (1) Simulation Technique (2) Bottoms up What is the ratio of red wine/white wine in the Netherlands? Configurational-Bias Monte Carlo Thijs J.H. Vlugt [6] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [7] Simulation Technique (3) Simulation Technique (4)

  3. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [8] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [9] Simulation Technique (5) Simulation Technique (6) Bottoms up Liquor store Shoe shop Configurational-Bias Monte Carlo Thijs J.H. Vlugt [10] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [11] Metropolis Monte Carlo (1) Metropolis Monte Carlo (2) How to generate configurations r i with a probability proportional to Whatever our rule is to move from one state to the next, the equilibrium distribution N ( r i ) = exp[ − βU ( r i )] ??? should not be destroyed N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth. A.H. Teller and E. Teller, ”Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., 1953, 21, 1087-1092.

  4. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [12] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [13] Move from the old state ( o ) to a new state ( n ) and back Detailed Balance (1) Requirement (balance): new 1 � � N ( o ) [ α ( o → n )acc( o → n )] = [ N ( n ) α ( n → o )acc( n → o )] new 5 n n new 2 Detailed balance : much stronger condition old N ( o ) α ( o → n )acc( o → n ) = N ( n ) α ( n → o )acc( n → o ) for every pair o , n new 4 new 3 new 1 new 5 leaving state o = entering state o new 2 � � N ( o ) [ α ( o → n )acc( o → n )] = [ N ( n ) α ( n → o )acc( n → o )] old n n N ( i ) : probability to be in state i (here: proportional to exp[ − βU ( r i )] ) α ( x → y ) : probability to attempt move from state x to state y new 4 new 3 acc( x → y ) : probability to accept move from state x to state y Configurational-Bias Monte Carlo Thijs J.H. Vlugt [14] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [15] Metropolis Acceptance Rule Detailed Balance (2) N ( o ) α ( o → n )acc( o → n ) = N ( n ) α ( n → o )acc( n → o ) General: acc( o → n ) acc( n → o ) = X • α ( x → y ) ; probability to select move from x to y Choice made by Metropolis (note: infinite number of other possibilities) • acc( x → y ) ; probability to accept move from x to y • often (but not always); α ( o → n ) = α ( n → o ) acc( o → n ) = min(1 , X ) Therefore (note that ∆ U = U ( n ) − U ( o ) ): Note than min( a, b ) = a if a < b and b otherwise acc( n → o ) = α ( n → o ) exp[ − βU ( n )] acc( o → n ) α ( o → n ) exp[ − βU ( o )] = α ( n → o ) α ( o → n ) exp[ − β ∆ U ] • always accept when X ≥ 1 In case that α ( o → n ) = α ( n → o ) • when X < 1 , generate uniformly distributed random number between 0 and 1 and accept or reject according to acc( o → n ) acc( o → n ) acc( n → o ) = exp[ − β ∆ U ]

  5. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [16] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [17] Monte Carlo Casino Smart Monte Carlo: α ( o → n ) � = α ( n → o ) Not a random displacement ∆ r uniformly from [ − δ, δ ] , but instead ∆ r = r (new) − r (old) = A × F + δr F : force on particle A : constant δr : taken from Gaussian distribution with width 2 A so P ( δr ) ∼ exp[ − ( δr 2 ) / 4 A ] − ( r new − ( r old + A × F ( o ))) 2 � � P ( r new ) ∼ exp 4 A � − (∆ r − A × F ( o )) 2 � exp α ( o → n ) 4 A α ( n → o ) = � − (∆ r + A × F ( n )) 2 � exp 4 A Configurational-Bias Monte Carlo Thijs J.H. Vlugt [18] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [19] Chain Molecules Self-Avoiding Walk on a Cubic Lattice • 3D lattice; 6 lattice directions • only 1 monomer per lattice site (otherwise U = ∞ ) • interactions only when | r ij | = 1 and | i − j | > 1

  6. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [20] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [21] Simple Model for Protein Folding Number of Configurations without Overlap Random Chains: 20 by 20 interaction matrix ∆ ij � n i =1 R i exp[ − βU i ] � R � = lim � n i =1 exp[ − βU i ] n →∞ YPDLTKWHAMEAGKIRFSVPDACLNGEGIRQVTLSN Fraction of chains without overlap decreases exponentially as a function of (E. Jarkova, T.J.H. Vlugt, N.K. Lee, J. Chem. Phys., 2005, 122, 114904) chainlength ( N ) total ( = 6 N − 1 ) N without overlap fraction no overlap 2 6 6 1 20 6 b) 6 7776 3534 0.454 5 8 279936 81390 0.290 15 4 10 10077696 1853886 0.183 z (b) 2 (dz) 10 3 12 362797056 41934150 0.115 prot1 13 2176782336 198842742 0.091 2 prot2 5 14 13060694016 943974510 0.072 prot3 1 prot4 15 78364164096 4468911678 0.057 0 0 0 2 4 6 8 10 0 2 4 6 8 10 16 470184984576 21175146054 0.045 Force (k B T/b) Force (k B T/b) 1 . 3 × 10 − 5 50 · · · · · · Configurational-Bias Monte Carlo Thijs J.H. Vlugt [22] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [23] Rosenbluth Sampling (1) Rosenbluth Sampling (2) exp[ − βu ij ⋆ ] P j ⋆ = 1. Place first monomer at a random position � k j =1 exp[ − βu ij ] 2. For the next monomer ( i ), generate k trial directions ( j = 1 , 2 , · · · , k ) each with energy u ij 3. Select trial direction j ⋆ with a probability exp[ − βu ij ⋆ ] P j ⋆ = � k j =1 exp[ − βu ij ] 4. Continue with step 2 until the complete chain is grown ( N monomers)

  7. Configurational-Bias Monte Carlo Thijs J.H. Vlugt [24] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [25] Rosenbluth Sampling (3) Rosenbluth Sampling (4) Probability to grow this chain ( N monomers, k trial directions) Probability to choose trial direction j ⋆ for the i th monomer � N i =1 exp[ − βu ij ⋆ ( i ) ] = exp[ − βU chain ] P chain = exp[ − βu ij ⋆ ] � N � k W chain j =1 exp[ − βu ij ] P j ⋆ = i =1 � k j =1 exp[ − βu ij ] Therefore, weightfactor for each chain i is the Rosenbluth factor W i : Probability to grow this chain ( N monomers, k trial directions) � n i =1 W i × R i � R � Boltzmann = lim N � N � n i =1 exp[ − βu ij ⋆ ( i ) ] i =1 W i = exp[ − βU chain ] n →∞ � P chain = P j ⋆ ( i ) = � N � k W chain j =1 exp[ − βu ij ] i =1 i =1 The unweighted distribution is called the Rosenbluth distribution: � n i =1 R i � R � Rosenbluth = lim n n →∞ Of course: � R � Rosenbluth � = � R � Boltzmann Configurational-Bias Monte Carlo Thijs J.H. Vlugt [26] Configurational-Bias Monte Carlo Thijs J.H. Vlugt [27] Intermezzo: Ensemble Averages at Different Temperatures Rosenbluth Distribution Differs from Boltzmann Distribution Probability distribution for the end-to-end distance r Ensemble averages at β ⋆ can (in principle) be computed from simulations at β : � d r N U ( r N ) exp[ − βU ( r N )] N = 10 N = 100 � U � β = d r N exp[ − βU ( r N )] � 0.4 0.1 d r N U ( r N ) exp[ − β ⋆ U ( r N )] exp[( β ⋆ − β ) × U ( r N )] Rosenbluth distribution � Rosenbluth distribution Boltzmann distribution = d r N exp[ − β ⋆ U ( r N )] exp[( β ⋆ − β ) × U ( r N )] Boltzmann distribution � 0.08 0.3 U ( r N ) exp[( β ⋆ − β ) × U ( r N )] � � β ⋆ = 0.06 � exp[( β ⋆ − β ) × U ( r N )] � β ⋆ P(r) 0.2 P(r) � U ( r N ) exp[∆ β × U ( r N )] � 0.04 β ⋆ = � exp[∆ β × U ( r N )] � β ⋆ 0.1 0.02 Useful or not??? 0 0 0 2 4 6 0 5 10 15 20 25 30 r r

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend