mpi lhc 2015 mpi lhc 2015
play

MPI@LHC 2015 MPI@LHC 2015 Ricks Story of the UE Rick Field - PowerPoint PPT Presentation

MPI@LHC 2015 MPI@LHC 2015 Ricks Story of the UE Rick Field University of Florida Outline of Talk Early days of Field-Feynman phenomenology. Early studies the underlying event at CDF and Tune A. Outgoing Parton PT(hard) Early


  1. Traditional Approach Traditional Approach Charged Particle ∆φ ∆φ ∆φ Correlations ∆φ CDF Run 1 Analysis Charged Jet #1 P T > PT min | η η | < η η η η cut η η Direction 2 π π π π “Transverse” region Away Region very sensitive to the Leading Object “Toward-Side” Jet “underlying event”! Direction Transverse ∆φ ∆φ ∆φ ∆φ Region ∆φ ∆φ ∆φ ∆φ “Toward” “Toward” φ φ φ φ Leading Object Toward Region “Transverse” “Transverse” “Transverse” “Transverse” Transverse Region “Away” “Away” Away Region 0 “Away-Side” Jet + η η cut η η - η η η cut η η η η η � Look at charged particle correlations in the azimuthal angle ∆φ ∆φ ∆φ ∆φ relative to a leading object ( i.e. CaloJet#1, ChgJet#1, PTmax, Z-boson). For CDF PTmin = 0.5 GeV/c η η cut = 1.0 or 0.8. η η ∆φ | < 60 o as “Toward”, 60 o < | ∆φ ∆φ | < 120 o as “Transverse”, and | ∆φ ∆φ | > 120 o as � Define | ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ “Away”. � All three regions have the same area in η η cut ×120 o = 2 η η - φ η η φ φ space, ∆η φ ∆η × ∆φ ∆η ∆η ∆φ = 2 η ∆φ ∆φ η η η η cut ×2 π η π /3. Construct π π densities by dividing by the area in η η - φ η η φ space. φ φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 16 Trieste, November 23, 2015

  2. ISAJET 7.32 (without MPI) ISAJET 7.32 (without MPI) “Transverse Transverse” ” Density Density “ ISAJET uses a naïve leading-log parton shower-model which does not agree with the data! ISAJET "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ Charged Jet #1 Direction 1.00 ∆φ ∆φ ∆φ ∆φ CDF Run 1Data Isajet "Transverse" Charged Density data uncorrected theory corrected 0.75 "Hard" “Toward” “Transverse” “Transverse” 0.50 “Away” 0.25 “Hard” "Remnants" February 25, 2000 Component 1.8 TeV | η η |<1.0 PT>0.5 GeV η η Beam-Beam 0.00 0 5 10 15 20 25 30 35 40 45 50 Remnants PT(charged jet#1) (GeV/c) � Plot shows average “transverse” charge particle density (| η η η |<1, p T >0.5 GeV) versus P T (charged jet#1) η compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with P T (hard)>3 GeV/c) . � The predictions of ISAJET are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 17 Trieste, November 23, 2015

  3. HERWIG 6.4 (without MPI) HERWIG 6.4 (without MPI) “Transverse Transverse” ” Density Density “ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ Charged Jet #1 1.00 Direction CDF Run 1Data Herwig 6.4 CTEQ5L HERWIG ∆φ ∆φ ∆φ ∆φ Total "Hard" "Transverse" Charged Density PT(hard) > 3 GeV/c data uncorrected theory corrected 0.75 “Toward” 0.50 “Transverse” “Transverse” “Away” 0.25 "Remnants" 1.8 TeV | η η |<1.0 PT>0.5 GeV η η 0.00 Beam-Beam “Hard” 0 5 10 15 20 25 30 35 40 45 50 Component Remnants PT(charged jet#1) (GeV/c) � Plot shows average “transverse” charge particle density (| η η |<1, p T >0.5 GeV) versus P T (charged η η jet#1) compared to the QCD hard scattering predictions of HERWIG 5.9 (default parameters with P T (hard)>3 GeV/c without MPI). � The predictions of HERWIG are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 18 Trieste, November 23, 2015

  4. Tuning PYTHIA 6.2: Tuning PYTHIA 6.2: Multiple Parton Interaction Parameters Multiple Parton Interaction Parameters Parameter Default Description PARP(83) 0.5 Double-Gaussian: Fraction of total hadronic matter within PARP(84) r e o C d r a H PARP(84) 0.2 Double-Gaussian: Fraction of the overall hadron radius containing the fraction PARP(83) of the Multiple Parton Interaction total hadronic matter. Color String Determines the energy PARP(85) 0.33 Probability that the MPI produces two gluons dependence of the MPI! Color String with color connections to the “nearest neighbors. Determine by comparing PARP(86) 0.66 Probability that the MPI produces two gluons Multiple Parton Interaction Affects the amount of with 630 GeV data! either as described by PARP(85) or as a closed initial-state radiation! gluon loop. The remaining fraction consists of Color String quark-antiquark pairs. Hard-Scattering Cut-Off PT0 PARP(89) 1 TeV Determines the reference energy E 0 . 5 PARP(82) 1.9 The cut-off P T0 that regulates the 2-to-2 PYTHIA 6.206 scattering divergence 1/PT 4 → 1/(PT 2 +P T0 ε = 0.25 (Set A)) 2 ) 2 ε ε ε GeV/c 4 PT0 (GeV/c) Take E 0 = 1.8 TeV PARP(90) 0.16 Determines the energy dependence of the cut-off 3 ε with P T0 as follows P T0 (E cm ) = P T0 (E cm /E 0 ) ε ε ε ε = PARP(90) ε ε ε 2 ε = 0.16 (default) ε ε ε PARP(67) 1.0 A scale factor that determines the maximum 1 parton virtuality for space-like showers. The 100 1,000 10,000 100,000 CM Energy W (GeV) larger the value of PARP(67) the more initial- Reference point state radiation. at 1.8 TeV MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 19 Trieste, November 23, 2015

  5. PYTHIA 6.206 Defaults PYTHIA 6.206 Defaults MPI constant probability scattering PYTHIA default parameters "Transverse" Charged Particle Density: dN/d η η η η d φ φ φ φ 1.00 CDF Data Parameter 6.115 6.125 6.158 6.206 Pythia 6.206 (default) "Transverse" Charged Density MSTP(82)=1 data uncorrected theory corrected PARP(81) = 1.9 GeV/c 0.75 MSTP(81) 1 1 1 1 MSTP(82) 1 1 1 1 0.50 PARP(81) 1.4 1.9 1.9 1.9 0.25 PARP(82) 1.55 2.1 2.1 1.9 1.8 TeV | η η |<1.0 PT>0.5 GeV η η PARP(89) 1,000 1,000 1,000 0.00 0 5 10 15 20 25 30 35 40 45 50 PARP(90) 0.16 0.16 0.16 PT(charged jet#1) (GeV/c) PARP(67) 4.0 4.0 1.0 1.0 CTEQ3L CTEQ4L CTEQ5L CDF Min-Bias CDF JET20 � Plot shows the “Transverse” charged particle density versus P T (chgjet#1) compared to the QCD hard scattering predictions of PYTHIA 6.206 (P T (hard) > 0) using the default parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L. Default parameters give Note Change very poor description of PARP(67) = 4.0 (< 6.138) the “underlying event”! PARP(67) = 1.0 (> 6.138) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 20 Trieste, November 23, 2015

  6. Run 1 PYTHIA Tune A Run 1 PYTHIA Tune A CDF Default Feburary 25, 2000! PYTHIA 6.206 CTEQ5L "Transverse" Charged Particle Density: dN/d η η d φ φ η η φ φ 1.00 CDF Preliminary Parameter Tune B Tune A PYTHIA 6.206 (Set A) "Transverse" Charged Density PARP(67)=4 Run 1 Analysis data uncorrected 0.75 theory corrected MSTP(81) 1 1 MSTP(82) 4 4 0.50 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 0.5 0.25 PYTHIA 6.206 (Set B) PARP(67)=1 PARP(84) 0.4 0.4 CTEQ5L 1.8 TeV | η η |<1.0 PT>0.5 GeV η η 0.00 PARP(85) 1.0 0.9 0 5 10 15 20 25 30 35 40 45 50 PARP(86) 1.0 0.95 PT(charged jet#1) (GeV/c) PARP(89) 1.8 TeV 1.8 TeV � Plot shows the “transverse” charged particle density PARP(90) 0.25 0.25 versus P T (chgjet#1) compared to the QCD hard PARP(67) 1.0 4.0 scattering predictions of two tuned versions of PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)). Old PYTHIA default Old PYTHIA default (more initial-state radiation) (more initial-state radiation) New PYTHIA default New PYTHIA default (less initial-state radiation) (less initial-state radiation) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 21 Trieste, November 23, 2015

  7. “Transverse Transverse” ” Charged Densities Charged Densities “ Energy Dependence Energy Dependence "Transverse" Charged PTsum Density: dPT sum /d η η η d φ η φ φ φ "Min Transverse" PTsum Density: dPT sum /d η η d φ φ η η φ φ 0.60 0.3 ε = 0.25 ε ε ε Pythia 6.206 (Set A) HERWIG 6.4 HERWIG 6.4 Charged PTsum Density (GeV) Charged PTsum Density (GeV) ε ε ε ε = 0.25 0.40 0.2 ε ε = 0.16 ε ε 0.20 0.1 ε = 0 ε ε ε CTEQ5L CTEQ5L ε = 0.16 ε ε ε ε ε ε ε = 0 Pythia 6.206 (Set A) 630 GeV | η η η |<1.0 PT>0.4 GeV η 630 GeV | η η η |<1.0 PT>0.4 GeV η 0.00 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PT(charged jet#1) (GeV/c) PT(charged jet#1) (GeV/c) � Shows the “transverse” charged PT sum density Hard-Scattering Cut-Off PT0 5 (| η η η η |<1, P T >0.4 GeV) versus P T (charged jet#1) at 630 PYTHIA 6.206 GeV predicted by HERWIG 6.4 (P T (hard) > 3 ε ε = 0.25 (Set A)) ε ε 4 PT0 (GeV/c) GeV/c, CTEQ5L) and a tuned version of PYTHIA 3 6.206 (P T (hard) > 0, CTEQ5L, Set A, ε ε ε ε = 0, ε ε ε ε = 0.16 (default) and ε ε ε = 0.25 (preferred)). ε 2 � Also shown are the PT sum densities (0.16 GeV/c and ε ε = 0.16 (default) ε ε 1 0.54 GeV/c) determined from the Tano, Kovacs, 100 1,000 10,000 100,000 CM Energy W (GeV) Huston, and Bhatti “transverse” cone analysis at Reference point 630 GeV. E 0 = 1.8 TeV MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 22 Trieste, November 23, 2015

  8. “Transverse Transverse” ” Charged Densities Charged Densities “ Energy Dependence Energy Dependence Rick Field Fermilab MC Workshop "Transverse" Charged PTsum Density: dPT sum /d η η d φ η η φ φ φ "Min Transverse" PTsum Density: dPT sum /d η η d φ φ η η φ φ 0.60 0.3 October 4, 2002! ε = 0.25 ε ε ε Pythia 6.206 (Set A) HERWIG 6.4 HERWIG 6.4 Charged PTsum Density (GeV) Charged PTsum Density (GeV) ε = 0.25 ε ε ε 0.40 0.2 ε ε = 0.16 ε ε 0.20 0.1 ε = 0 ε ε ε Increasing ε ε produces less energy ε ε CTEQ5L CTEQ5L dependence for the UE resulting in ε = 0.16 ε ε ε ε ε ε = 0 ε Pythia 6.206 (Set A) 630 GeV | η η |<1.0 PT>0.4 GeV η η 630 GeV | η η |<1.0 PT>0.4 GeV η η less UE activity at the LHC! 0.00 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PT(charged jet#1) (GeV/c) PT(charged jet#1) (GeV/c) Lowering P T0 at 630 GeV ( i.e. � Shows the “transverse” charged PT sum density increasing ε ε ) increases UE activity ε ε Hard-Scattering Cut-Off PT0 5 resulting in less energy dependence. (| η η |<1, P T >0.4 GeV) versus P T (charged jet#1) at 630 η η PYTHIA 6.206 GeV predicted by HERWIG 6.4 (P T (hard) > 3 ε ε = 0.25 (Set A)) ε ε 4 PT0 (GeV/c) GeV/c, CTEQ5L) and a tuned version of PYTHIA 3 6.206 (P T (hard) > 0, CTEQ5L, Set A, ε ε ε ε = 0, ε ε ε ε = 0.16 (default) and ε ε ε = 0.25 (preferred)). ε 2 � Also shown are the PT sum densities (0.16 GeV/c and ε = 0.16 (default) ε ε ε 1 0.54 GeV/c) determined from the Tano, Kovacs, 100 1,000 10,000 100,000 CM Energy W (GeV) Huston, and Bhatti “transverse” cone analysis at Reference point 630 GeV. E 0 = 1.8 TeV MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 23 Trieste, November 23, 2015

  9. Early Studies of the UE Early Studies of the UE DPF 2000: My first presentation on the “underlying event”! First CDF UE Studies Rick Field Wine & Cheese Talk October 4, 2002 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 24 Trieste, November 23, 2015

  10. My First Talk on the UE My First Talk on the UE Need to “tune” the QCD MC models! My first look at the “underlying event plateau”! MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 25 Trieste, November 23, 2015

  11. Other Early UE Talks Other Early UE Talks Workshop on Physics at TeV Colliders, Les Houches, May 30, 2001. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 26 Trieste, November 23, 2015

  12. Other Early UE Talks Other Early UE Talks Workshop on Physics at TeV Colliders, Les Houches, May 30, 2001. Cambridge Workshop on TeV-Scale Physics, July 20, 2002 . MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 27 Trieste, November 23, 2015

  13. Other Early UE Talks Other Early UE Talks Workshop on Physics at TeV Colliders, Les Houches, May 30, 2001. Cambridge Workshop on TeV-Scale Physics, July 20, 2002 . HERA and the LHC Workshop, CERN, October 11, 2004 . MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 28 Trieste, November 23, 2015

  14. KITP Collider Workshop 2004 KITP Collider Workshop 2004 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 29 Trieste, November 23, 2015

  15. KITP Collider Workshop 2004 KITP Collider Workshop 2004 Together with Torbjörn Sjöstrand and his graduate student Peter Skands! MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 30 Trieste, November 23, 2015

  16. “Transverse Transverse” ”Particle Particle Densities Densities “ Charged Particles 2 π π π π p T > 0.5 GeV/c | η η η η | < 1 Away Region Jet #1 Direction Area = 4 π π /6 π π ∆φ ∆φ ∆φ ∆φ Transverse Region 1 AVE “transverse” “Toward” (Trans 1 + Trans 2)/2 φ φ φ φ Leading Jet “Trans 1” “Trans 2” Toward Region Transverse “Away” Region 2 1 charged particle in the “transverse 2” region Away Region 0 dN chg /d η η d φ φ = 1/(4 π/6) π/6) = 0.48 η η φ φ π/6) π/6) +1 -1 η η η η � Study the charged particles (p T > 0.5 GeV/c, | η η | < 1) in the “Transverse 1” and “Transverse η η 2” and form the charged particle density, dNchg/d η η d φ φ , and the charged scalar p T sum η η φ φ density, dPTsum/d η η d φ η η φ . φ φ � The average “transverse” density is the average of “transverse 1” and “transverse 2”. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 31 Trieste, November 23, 2015

  17. Charged Particle Density Charged Particle Density ∆φ Dependence ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Dependence Charged Particle Density: dN/d η η η η d φ φ φ φ Log Scale! Jet #1 Direction 10.0 CDF Preliminary 30 < ET(jet#1) < 70 GeV data uncorrected “Toward-Side” Jet Charged Particle Density ∆φ ∆φ ∆φ ∆φ "Transverse" Region “Toward” 1.0 “Transverse” “Transverse” Jet#1 “Away” Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.1 “Away-Side” Jet 0 30 60 90 120 150 180 210 240 270 300 330 360 Leading Jet Min-Bias ∆φ ∆φ (degrees) ∆φ ∆φ 0.25 per unit η η - φ φ η η φ φ � Shows the ∆φ ∆φ ∆φ dependence of the charged particle density, dN chg /d η ∆φ η d φ η η φ , for charged φ φ particles in the range p T > 0.5 GeV/c and | η η | < 1 relative to jet#1 (rotated to 270 o ) for η η “leading jet” events 30 < E T (jet#1) < 70 GeV. � Also shows charged particle density, dN chg /d η η d φ φ , for charged particles in the range p T > η η φ φ 0.5 GeV/c and | η η η | < 1 for “min-bias” collisions. η MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 32 Trieste, November 23, 2015

  18. Charged Particle Density Charged Particle Density ∆φ Dependence ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Dependence Charged Particle Density: dN/d η η η d φ η φ φ φ Log Scale! Jet #1 Direction Jet #1 Direction 10.0 CDF Preliminary 30 < ET(jet#1) < 70 GeV data uncorrected “Toward-Side” Jet “Toward-Side” Jet Charged Particle Density ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ "Transverse" Region “Toward” “Toward” 1.0 “Transverse” “Transverse” “Transverse” “Transverse” Jet #3 Jet#1 “Away” “Away” Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.1 “Away-Side” Jet “Away-Side” Jet 0 30 60 90 120 150 180 210 240 270 300 330 360 Leading Jet Min-Bias ∆φ (degrees) ∆φ ∆φ ∆φ 0.25 per unit η η - φ φ η η φ φ � Shows the ∆φ ∆φ dependence of the charged particle density, dN chg /d η ∆φ ∆φ η η d φ η φ φ , for charged φ particles in the range p T > 0.5 GeV/c and | η η η η | < 1 relative to jet#1 (rotated to 270 o ) for “leading jet” events 30 < E T (jet#1) < 70 GeV. � Also shows charged particle density, dN chg /d η η d φ φ , for charged particles in the range p T > η η φ φ 0.5 GeV/c and | η η η | < 1 for “min-bias” collisions. η MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 33 Trieste, November 23, 2015

  19. Charged Particle Density Charged Particle Density ∆φ Dependence ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Dependence Refer to this as a Jet #1 Direction “Leading Jet” event Charged Particle Density: dN/d η η d φ η η φ φ φ ∆φ ∆φ ∆φ ∆φ Charged Particle Density: dN/d η η d φ φ η η φ φ 10.0 10.0 CDF Preliminary 30 < ET(jet#1) < 70 GeV Subset CDF Preliminary 30 < ET(jet#1) < 70 GeV “Toward” Back-to-Back data uncorrected data uncorrected Leading Jet Charged Particle Density Charged Particle Density “Transverse” “Transverse” Min-Bias "Transverse" "Transverse" “Away” Region Region Refer to this as a 1.0 1.0 Jet #1 Direction “Back-to-Back” event ∆φ ∆φ ∆φ ∆φ “Toward” Jet#1 Jet#1 Charged Particles Charged Particles (| η (| η η |<1.0, PT>0.5 GeV/c) η |<1.0, PT>0.5 GeV/c) η η η η “Transverse” “Transverse” 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 “Away” ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ Jet #2 Direction � Look at the “transverse” region as defined by the leading jet (JetClu R = 0.7, | η η η η | < 2) or by the leading two jets (JetClu R = 0.7, | η η | < 2). “Back-to-Back” events are selected to η η have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” ( ∆φ ∆φ 12 > 150 o ) with ∆φ ∆φ almost equal transverse energies (E T (jet#2)/E T (jet#1) > 0.8). � Shows the ∆φ ∆φ dependence of the charged particle density, dN chg /d η ∆φ ∆φ η d φ η η φ φ , for charged φ particles in the range p T > 0.5 GeV/c and | η η | < 1 relative to jet#1 (rotated to 270 o ) for 30 η η < E T (jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 34 Trieste, November 23, 2015

  20. Charged Particle Density Charged Particle Density ∆φ Dependence ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Dependence Jet #1 Direction “Leading Jet” Charged Particle Density: dN/d η η d φ η η φ φ φ ∆φ ∆φ ∆φ ∆φ 272 268 276 CDF Preliminary 264 280 30 < ET(jet#1) < 70 GeV 260 284 256 288 252 292 248 296 “Toward” 244 300 data uncorrected 240 304 236 308 232 312 228 316 “Transverse” “Transverse” 224 320 220 324 Jet#1 216 328 212 332 “Away” 208 336 204 340 200 344 196 348 “Back-to-Back” 192 352 Jet #1 Direction 188 "Transverse" "Transverse" 356 ∆φ ∆φ ∆φ ∆φ 184 360 Region Region 180 4 176 8 “Toward” 172 12 0.5 168 16 164 20 “Transverse” “Transverse” 160 24 1.0 156 28 Leading Jet 152 Back-to-Back 32 148 36 “Away” 144 1.5 40 140 44 136 48 132 52 Jet #2 Direction 2.0 128 56 Charged Particles 124 60 120 64 (| η η |<1.0, PT>0.5 GeV/c) 116 68 η η 112 72 108 76 Polar Plot 104 80 100 84 96 88 92 � Shows the ∆φ ∆φ ∆φ ∆φ dependence of the charged particle density, dN chg /d η η d φ η η φ , for charged φ φ particles in the range p T > 0.5 GeV/c and | η η η | < 1 relative to jet#1 (rotated to 270 o ) for 30 η < E T (jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 35 Trieste, November 23, 2015

  21. “Transverse Transverse” ” PTsum PTsum Density Density “ PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A Jet #1 Direction “Leading Jet” "AVE Transverse" PTsum Density: dPT/d η η d φ η η φ φ φ ∆φ ∆φ ∆φ ∆φ 1.4 “Toward” "Transverse" PTsum Density (GeV/c) CDF Preliminary Leading Jet 1.2 data uncorrected PY Tune A theory + CDFSIM “Transverse” “Transverse” 1.0 “Away” 0.8 0.6 “Back-to-Back” Jet #1 Direction 0.4 ∆φ ∆φ ∆φ ∆φ Back-to-Back HW 0.2 “Toward” 1.96 TeV Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.0 “Transverse” “Transverse” 0 50 100 150 200 250 ET(jet#1) (GeV) “Away” Jet #2 Direction Now look in detail at “back-to-back” events in the region 30 < E T (jet#1) < 70 GeV! � Shows the average charged PTsum density, dPT sum /d η η d φ η η φ φ φ , in the “transverse” region (p T > 0.5 GeV/c, | η η | < 1) versus E T (jet#1) for “Leading Jet” and “Back-to-Back” events. η η � Compares the ( uncorrected ) data with PYTHIA Tune A and HERWIG (no MPI) after CDFSIM. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 36 Trieste, November 23, 2015

  22. Charged PTsum PTsum Density Density Charged PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A Charged PTsum Density: dPT/d η η d φ η η φ φ φ Charged PTsum Density: dPT/d η η d φ φ η η φ φ 100.0 100.0 Charged Particles Charged Particles Back-to-Back Back-to-Back 30 < ET(jet#1) < 70 GeV 30 < ET(jet#1) < 70 GeV Charged PTsum Density (GeV/c) Charged PTsum Density (GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η (| η η |<1.0, PT>0.5 GeV/c) η η PY Tune A HERWIG 10.0 10.0 "Transverse" Region 1.0 1.0 CDF Preliminary CDF Preliminary Jet#1 "Transverse" Jet#1 data uncorrected data uncorrected Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ Data - Theory: Charged PTsum Density dPT/d η η d φ Data - Theory: Charged PTsum Density dPT/d η η η d φ η φ φ φ η η φ φ φ 2 2 Back-to-Back 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary 30 < ET(jet#1) < 70 GeV Back-to-Back data uncorrected data uncorrected PYTHIA Tune A HERWIG theory + CDFSIM theory + CDFSIM Data - Theory (GeV/c) Data - Theory (GeV/c) 1 1 0 0 -1 -1 "Transverse" "Transverse" Region Region Charged Particles Jet#1 Charged Particles Jet#1 (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η η η -2 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 37 Trieste, November 23, 2015

  23. Charged PTsum PTsum Density Density Charged PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A HERWIG ( without multiple parton interactions ) does not produces enough PTsum in the “transverse” region for 30 < E T (jet#1) < 70 GeV! Charged PTsum Density: dPT/d η η η η d φ φ φ φ Charged PTsum Density: dPT/d η η d φ φ η η φ φ 100.0 100.0 Charged Particles Charged Particles Back-to-Back Back-to-Back 30 < ET(jet#1) < 70 GeV 30 < ET(jet#1) < 70 GeV Charged PTsum Density (GeV/c) Charged PTsum Density (GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η (| η η η |<1.0, PT>0.5 GeV/c) η PY Tune A HERWIG 10.0 10.0 "Transverse" Region 1.0 1.0 CDF Preliminary CDF Preliminary Jet#1 "Transverse" Jet#1 data uncorrected data uncorrected Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ Data - Theory: Charged PTsum Density dPT/d η η d φ Data - Theory: Charged PTsum Density dPT/d η η d φ η η φ φ φ η η φ φ φ 2 2 Back-to-Back 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary 30 < ET(jet#1) < 70 GeV Back-to-Back data uncorrected data uncorrected PYTHIA Tune A HERWIG theory + CDFSIM theory + CDFSIM Data - Theory (GeV/c) Data - Theory (GeV/c) 1 1 0 0 -1 -1 "Transverse" "Transverse" Region Region Charged Particles Jet#1 Charged Particles Jet#1 (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η η η -2 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 38 Trieste, November 23, 2015

  24. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Densities Charged Particle Densities Maximum p T particle in PTmaxT “Associated” densities do the “transverse” region! Direction Jet #1 Direction not include PTmaxT! ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Jet#1 Region “Toward” ∆φ ∆φ ∆φ ∆φ PTmaxT Jet#2 Jet#1 “TransMAX” “TransMIN” Direction Region Region Jet#2 PTmaxT “Away” Region Jet #2 Direction � Use the leading jet in “back-to-back” events to define the “transverse” region and look at the maximum p T charged particle in the “transverse” region, PTmaxT. � Look at the ∆φ ∆φ ∆φ dependence of the “associated” charged particle and PTsum densities, ∆φ dN chg /d η η η d φ η φ φ φ and dPT sum /d η η η η d φ φ φ for charged particles (p T > 0.5 GeV/c, | η φ η η η | < 1, not including PTmaxT ) relative to PTmaxT. � Rotate so that PTmaxT is at the center of the plot ( i.e. 180 o ). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 39 Trieste, November 23, 2015

  25. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Density Charged Particle Density “Associated” densities do Associated Particle Density: dN/d η η d φ not include PTmaxT! η η φ φ φ PTmaxT 10.0 Back-to-Back Direction CDF Preliminary Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 30 < ET(jet#1) < 70 GeV Associated Particle Density data uncorrected ∆φ ∆φ ∆φ ∆φ PTmaxT not included 1.0 Jet#2 Jet#1 Jet#2 Region Region Region PTmaxT > 2.0 GeV/c PTmaxT > 1.0 GeV/c "Jet#1" PTmaxT ?? PTmaxT > 0.5 GeV/c Region 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ ∆φ Log Scale! � Look at the ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η ∆φ ∆φ η d φ η η φ for φ φ charged particles (p T > 0.5 GeV/c, | η η η η | < 1, not including PTmaxT ) relative to PTmaxT (rotated to 180 o ) for PTmaxT > 0.5 GeV/c, PTmaxT > 1.0 GeV/c and PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < E T (jet#1) < 70 GeV. � Shows “jet structure” in the “transverse” region ( i.e. the “birth” of the 3 rd & 4 th jet). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 40 Trieste, November 23, 2015

  26. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Density Charged Particle Density “Associated” densities do Associated Particle Density: dN/d η η d φ not include PTmaxT! η η φ φ φ PTmaxT 10.0 Back-to-Back Direction CDF Preliminary Charged Particles Jet #3 (| η η |<1.0, PT>0.5 GeV/c) η η 30 < ET(jet#1) < 70 GeV Associated Particle Density data uncorrected ∆φ ∆φ ∆φ ∆φ PTmaxT not included 1.0 Jet #1 Jet#2 Jet#1 Jet #2 Jet#2 Region Region Region PTmaxT > 2.0 GeV/c PTmaxT > 1.0 GeV/c "Jet#1" PTmaxT Jet #4 ?? PTmaxT > 0.5 GeV/c Region 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ ∆φ Log Scale! � Look at the ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η ∆φ ∆φ η η d φ η φ for φ φ charged particles (p T > 0.5 GeV/c, | η η η η | < 1, not including PTmaxT ) relative to PTmaxT (rotated to 180 o ) for PTmaxT > 0.5 GeV/c, PTmaxT > 1.0 GeV/c and PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < E T (jet#1) < 70 GeV. � Shows “jet structure” in the “transverse” region ( i.e. the “birth” of the 3 rd & 4 th jet). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 41 Trieste, November 23, 2015

  27. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Densities Charged Particle Densities Charged Particle Density: dN/d η η d φ η η φ φ φ “Back-to-Back” Jet #1 Direction charge density ∆φ ∆φ ∆φ ∆φ 2 CDF Preliminary 358 6 354 10 30 < ET(jet#1) < 70 GeV 350 14 346 18 342 22 338 26 Back-to-Back 334 30 data uncorrected 330 34 “Toward” 326 38 322 42 318 46 314 50 310 54 “Transverse” “Transverse” Jet#1 306 58 302 62 298 66 “Away” 294 70 290 74 286 78 “Back-to-Back” "Transverse" 282 82 Jet #2 Direction 278 Region "Transverse" 86 “associated” density 274 90 Region PTmaxT 270 94 266 98 Jet#1 262 102 0.5 Region 258 106 ∆φ ∆φ ∆φ ∆φ 254 110 250 114 PTmaxT 1.0 246 118 Direction 242 122 238 126 Jet#2 234 130 1.5 230 134 Region 226 138 222 142 Associated Density 218 2.0 146 Charged Particles 214 150 PTmaxT not included 210 154 (| η η |<1.0, PT>0.5 GeV/c) 206 158 η η Polar Plot 202 162 198 166 194 170 190 174 186 178 182 � Shows the ∆φ ∆φ ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η η η η d φ φ φ φ , p T > 0.5 GeV/c, | η η | < 1 ( not including PTmaxT ) relative to PTmaxT (rotated to 180 o ) and the charged η η particle density, dN chg /d η η d φ φ , p T > 0.5 GeV/c, | η η | < 1 relative to jet#1 (rotated to 270 o ) for η η φ φ η η “back-to-back events” with 30 < E T (jet#1) < 70 GeV. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 42 Trieste, November 23, 2015

  28. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Densities Charged Particle Densities “Back-to-Back” Charged Particle Density: dN/d η η d φ η η φ φ φ Jet #1 Direction charge density ∆φ ∆φ ∆φ ∆φ 2 CDF Preliminary 358 6 30 < ET(jet#1) < 70 GeV 354 10 350 14 346 18 342 22 338 26 Back-to-Back 334 30 data uncorrected 330 34 “Toward” 326 38 322 42 318 46 314 50 “Transverse” “Transverse” 310 54 Jet#1 306 58 302 62 298 66 “Away” 294 70 290 74 286 78 “Back-to-Back” "Transverse" Jet #2 Direction 282 82 “associated” density Region "Transverse" 278 86 274 90 Region PTmaxT 270 94 266 98 Jet#1 262 102 Region 0.5 258 106 ∆φ ∆φ ∆φ ∆φ 254 110 PTmaxT 250 114 1.0 246 118 Direction 242 122 238 126 Jet#2 234 1.5 130 Region 230 134 Associated Density 226 138 222 142 PTmaxT > 2 GeV/c 2.0 218 146 Charged Particles 214 150 (not included) 210 154 Polar Plot (| η η |<1.0, PT>0.5 GeV/c) 206 158 η η 202 162 198 166 194 170 190 174 186 178 182 � Shows the ∆φ ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η ∆φ η d φ η η φ φ , p T > 0.5 φ GeV/c, | η η | < 1, PTmaxT > 2.0 GeV/c ( not including PTmaxT ) relative to PTmaxT (rotated to η η 180 o ) and the charged particle density, dN chg /d η η d φ φ , p T > 0.5 GeV/c, | η η | < 1, relative to jet#1 η η φ φ η η (rotated to 270 o ) for “back-to-back events” with 30 < E T (jet#1) < 70 GeV. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 43 Trieste, November 23, 2015

  29. Back- -to to- -Back Back “ “Associated Associated” ” Back Charged Particle Density Charged Particle Density Associated Particle Density: dN/d η η d φ η η φ φ φ PTmaxT 10.0 Direction CDF Preliminary Charged Particles Back-to-Back data uncorrected ∆φ ∆φ Associated Particle Density ∆φ ∆φ (| η η |<1.0, PT>0.5 GeV/c) η η 1.0 Jet#2 Jet#1 Jet#2 Region Region Region 95 < ET(jet#1) < 130 GeV 30 < ET(jet#1) < 70 GeV "Jet#1" PTmaxT Region PTmaxT > 2.0 GeV/c (not included) 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 Log Scale! ∆φ (degrees) ∆φ ∆φ ∆φ � Look at the ∆φ ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η ∆φ η η η d φ φ , p T > 0.5 φ φ GeV/c, | η η η | < 1 ( not including PTmaxT ) relative to PTmaxT (rotated to 180 o ) for PTmaxT > 2.0 η GeV/c for “back-to-back” events with 30 < E T (jet#1) < 70 GeV and 95 < E T (jet#1) < 130 GeV. � Very little dependence on E T (jet#1) in the “transverse” region for “back-to-back” events! MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 44 Trieste, November 23, 2015

  30. “Associated Associated” ” PTsum PTsum Density Density “ PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A PTmaxT > 0.5 GeV/c Associated PTsum Density: dPT/d η η η η d φ φ φ φ Associated PTsum Density: dPT/d η η η η d φ φ φ φ 10.0 10.0 Charged Particles Charged Particles Associated PTsum Density (GeV/c) Associated PTsum Density (GeV/c) (| η η η η |<1.0, PT>0.5 GeV/c) (| η η η |<1.0, PT>0.5 GeV/c) η PTmaxT not included PTmaxT not included 1.0 1.0 PTmaxT > 0.5 GeV/c Back-to-Back PTmaxT > 0.5 GeV/c Back-to-Back PY Tune A 30 < ET(jet#1) < 70 GeV HERWIG 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary PTmaxT PTmaxT "Jet#1" "Jet#1" data uncorrected data uncorrected Region Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ (degrees) Data - Theory: Associated PTsum Density dPT/d η η d φ Data - Theory: Associated PTsum Density dPT/d η η η d φ η φ φ φ η η φ φ φ 2 2 Back-to-Back Back-to-Back CDF Preliminary CDF Preliminary Charged Particles Charged Particles 30 < ET(jet#1) < 70 GeV (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) 30 < ET(jet#1) < 70 GeV η η η η data uncorrected data uncorrected theory + CDFSIM PTmaxT not included theory + CDFSIM PTmaxT not included Data - Theory (GeV/c) PYTHIA Tune A Data - Theory (GeV/c) 1 1 0 0 -1 -1 PTmaxT PTmaxT HERWIG "Jet#1" "Jet#1" Region Region -2 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 45 Trieste, November 23, 2015

  31. “Associated Associated” ” PTsum PTsum Density Density “ PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A HERWIG ( without multiple parton interactions ) does not produce enough “associated” PTsum in the direction of PTmaxT! PTmaxT > 0.5 GeV/c Associated PTsum Density: dPT/d η η d φ η η φ φ φ Associated PTsum Density: dPT/d η η η d φ η φ φ φ 10.0 10.0 Charged Particles Charged Particles Associated PTsum Density (GeV/c) Associated PTsum Density (GeV/c) (| η η η η |<1.0, PT>0.5 GeV/c) (| η η η |<1.0, PT>0.5 GeV/c) η PTmaxT not included PTmaxT not included 1.0 1.0 PTmaxT > 0.5 GeV/c Back-to-Back PTmaxT > 0.5 GeV/c Back-to-Back PY Tune A 30 < ET(jet#1) < 70 GeV HERWIG 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary PTmaxT PTmaxT "Jet#1" "Jet#1" data uncorrected data uncorrected Region Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ ∆φ ∆φ ∆φ (degrees) ∆φ (degrees) ∆φ ∆φ ∆φ And HERWIG ( without multiple Data - Theory: Associated PTsum Density dPT/d η η d φ Data - Theory: Associated PTsum Density dPT/d η η η η d φ φ φ φ η η φ φ φ parton interactions ) does not 2 2 Back-to-Back Back-to-Back CDF Preliminary CDF Preliminary Charged Particles Charged Particles produce enough PTsum in the 30 < ET(jet#1) < 70 GeV (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) 30 < ET(jet#1) < 70 GeV η η η η data uncorrected data uncorrected direction opposite of PTmaxT! theory + CDFSIM PTmaxT not included theory + CDFSIM PTmaxT not included Data - Theory (GeV/c) PYTHIA Tune A Data - Theory (GeV/c) 1 1 0 0 -1 -1 PTmaxT PTmaxT HERWIG "Jet#1" "Jet#1" Region Region -2 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 46 Trieste, November 23, 2015

  32. “Associated Associated” ” PTsum PTsum Density Density “ PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A PTmaxT > 2 GeV/c Associated PTsum Density: dPT/d η η d φ Associated PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 10.0 10.0 Charged Particles Charged Particles Associated PTsum Density (GeV/c) Associated PTsum Density (GeV/c) (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η η η PTmaxT not included PTmaxT not included 1.0 1.0 PTmaxT > 2.0 GeV/c Back-to-Back PTmaxT > 2.0 GeV/c Back-to-Back PY Tune A 30 < ET(jet#1) < 70 GeV HERWIG 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary PTmaxT PTmaxT "Jet#1" "Jet#1" data uncorrected data uncorrected Region Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ Data - Theory: Associated Particle Density dN/d η η η η d φ φ φ φ Data - Theory: Associated Particle Density dN/d η η d φ η η φ φ φ 2.0 2 Back-to-Back CDF Preliminary CDF Preliminary Back-to-Back 30 < ET(jet#1) < 70 GeV HERWIG data uncorrected data uncorrected 30 < ET(jet#1) < 70 GeV PYTHIA Tune A theory + CDFSIM theory + CDFSIM 1.0 1 Data - Theory Data - Theory 0.0 0 -1.0 -1 Charged Particles Charged Particles PTmaxT PTmaxT "Jet#1" "Jet#1" (| η η |<1.0, PT>0.5 GeV/c) η η (| η η |<1.0, PT>0.5 GeV/c) η η Region Region PTmaxT > 2.0 GeV/c (not included) PTmaxT > 2.0 GeV/c (not included) -2.0 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 47 Trieste, November 23, 2015

  33. “Associated Associated” ” PTsum PTsum Density Density “ For PTmaxT > 2.0 GeV both PYTHIA and HERWIG produce PYTHIA Tune A vs vs HERWIG HERWIG PYTHIA Tune A slightly too much “associated” PTsum in the direction of PTmaxT! PTmaxT > 2 GeV/c Associated PTsum Density: dPT/d η η d φ Associated PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 10.0 10.0 Charged Particles Charged Particles Associated PTsum Density (GeV/c) Associated PTsum Density (GeV/c) (| η η |<1.0, PT>0.5 GeV/c) (| η η |<1.0, PT>0.5 GeV/c) η η η η PTmaxT not included PTmaxT not included 1.0 1.0 PTmaxT > 2.0 GeV/c Back-to-Back PTmaxT > 2.0 GeV/c Back-to-Back PY Tune A 30 < ET(jet#1) < 70 GeV HERWIG 30 < ET(jet#1) < 70 GeV CDF Preliminary CDF Preliminary PTmaxT PTmaxT "Jet#1" "Jet#1" data uncorrected data uncorrected Region Region theory + CDFSIM theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ But HERWIG ( without multiple parton interactions ) produces Data - Theory: Associated Particle Density dN/d η η η η d φ φ φ φ Data - Theory: Associated Particle Density dN/d η η η η d φ φ φ φ 2.0 2 too few particles in the Back-to-Back CDF Preliminary CDF Preliminary Back-to-Back direction opposite of PTmaxT! 30 < ET(jet#1) < 70 GeV HERWIG data uncorrected data uncorrected 30 < ET(jet#1) < 70 GeV PYTHIA Tune A theory + CDFSIM theory + CDFSIM 1.0 1 Data - Theory Data - Theory 0.0 0 -1.0 -1 Charged Particles Charged Particles PTmaxT PTmaxT "Jet#1" "Jet#1" (| η η |<1.0, PT>0.5 GeV/c) η η (| η η η η |<1.0, PT>0.5 GeV/c) Region Region PTmaxT > 2.0 GeV/c (not included) PTmaxT > 2.0 GeV/c (not included) -2.0 -2 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ ∆φ MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 48 Trieste, November 23, 2015

  34. Jet Topologies Jet Topologies QCD Three Jet Topology QCD Four Jet Topology Charged Particle Density: dN/d η η η d φ η φ φ φ 2 CDF Preliminary 358 6 354 10 30 < ET(jet#1) < 70 GeV 350 14 346 18 342 22 338 26 Back-to-Back 334 30 data uncorrected 330 34 Jet #1 326 38 322 42 318 46 Jet #1 314 50 310 54 Jet#1 306 58 302 62 298 66 Jet#1 294 70 Region Jet #3 290 74 ∆φ ∆φ ∆φ ∆φ 286 78 "Transverse" Jet #3 PTmaxT 282 82 Region 278 "Transverse" 86 Direction 274 90 Region PTmaxT Jet#2 270 94 Region 266 98 262 102 Jet #2 0.5 258 106 254 110 Jet #2 250 114 1.0 246 118 242 122 238 126 234 130 1.5 230 134 Associated Density 226 138 222 142 PTmaxT > 2 GeV/c 218 2.0 146 Charged Particles 214 150 (not included) 210 154 Polar Plot (| η η |<1.0, PT>0.5 GeV/c) 206 158 η η 202 162 198 166 194 170 190 186 178 174 182 � Shows the ∆φ ∆φ ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η η η d φ η φ φ , p T > 0.5 φ GeV/c, | η η | < 1, PTmaxT > 2.0 GeV/c ( not including PTmaxT ) relative to PTmaxT (rotated to η η 180 o ) and the charged particle density, dN chg /d η η d φ η η φ φ φ , p T > 0.5 GeV/c, | η η η η | < 1, relative to jet#1 (rotated to 270 o ) for “back-to-back events” with 30 < E T (jet#1) < 70 GeV. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 49 Trieste, November 23, 2015

  35. Jet Topologies Jet Topologies QCD Three Jet Topology QCD Four Jet Topology Charged Particle Density: dN/d η η d φ η η φ φ φ 2 CDF Preliminary 358 6 354 10 30 < ET(jet#1) < 70 GeV 350 14 346 18 342 22 338 26 Back-to-Back 334 30 data uncorrected 330 34 Jet #1 326 38 322 42 318 46 Jet #1 314 50 310 54 Jet#1 306 58 302 62 298 66 Jet#1 294 70 Region Jet #3 Jet #4 290 74 ∆φ ∆φ ∆φ ∆φ 286 78 "Transverse" Jet #4 Jet #3 PTmaxT 282 82 Region 278 "Transverse" 86 Direction 274 90 Region PTmaxT Jet#2 270 94 Region 266 98 262 102 Jet #2 0.5 258 106 254 110 Jet #2 250 114 1.0 246 118 242 122 238 126 234 130 1.5 230 134 Associated Density 226 138 222 142 PTmaxT > 2 GeV/c 218 2.0 146 Charged Particles 214 150 (not included) 210 154 Polar Plot (| η η |<1.0, PT>0.5 GeV/c) 206 158 η η 202 162 198 166 194 170 190 186 178 174 182 � Shows the ∆φ ∆φ dependence of the “associated” charged particle density, dN chg /d η ∆φ ∆φ η η η d φ φ φ , p T > 0.5 φ GeV/c, | η η | < 1, PTmaxT > 2.0 GeV/c ( not including PTmaxT ) relative to PTmaxT (rotated to η η 180 o ) and the charged particle density, dN chg /d η η d φ η η φ φ φ , p T > 0.5 GeV/c, | η η η η | < 1, relative to jet#1 (rotated to 270 o ) for “back-to-back events” with 30 < E T (jet#1) < 70 GeV. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 50 Trieste, November 23, 2015

  36. Jet Multiplicity Jet Multiplicity Max p T in the Jet Multiplicity “transverse” region! 50% Jet #1 Direction CDF Run 2 Pre-Preliminary Data ∆φ ∆φ ∆φ ∆φ data uncorrected 40% theory + CDFSIM “Toward” Percent of Events Back-to-Back 30% “TransMAX” “TransMIN” 30 < ET(jet#1) < 70 GeV PTmaxT > 2.0 GeV/c PTmaxT “Away” 20% Jet #2 Direction 10% 0% 0 1 2 3 4 5 6 7 8 9 10 Data have about equal amounts Number of Jets of 3 and 4 jet topologies! � Shows the data on the number of jets (JetClu, R = 0.7, | η η | < 2, E T (jet) > 3 GeV) η η for “back-to-back” events with 30 < E T (jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 51 Trieste, November 23, 2015

  37. Jet Multiplicity Jet Multiplicity Max p T in the Jet Multiplicity Jet Multiplicity “transverse” region! 50% 50% Jet #1 Direction CDF Run 2 Pre-Preliminary CDF Run 2 Pre-Preliminary Data Data ∆φ ∆φ ∆φ ∆φ PY Tune A data uncorrected data uncorrected 40% 40% theory + CDFSIM theory + CDFSIM “Toward” Percent of Events Percent of Events Back-to-Back Back-to-Back 30% 30% “TransMAX” “TransMIN” 30 < ET(jet#1) < 70 GeV 30 < ET(jet#1) < 70 GeV PTmaxT > 2.0 GeV/c PTmaxT > 2.0 GeV/c PTmaxT “Away” 20% 20% Jet #2 Direction 10% 10% 0% 0% 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data have about equal amounts Number of Jets Number of Jets of 3 and 4 jet topologies! � Shows the data on the number of jets (JetClu, R = 0.7, | η η | < 2, E T (jet) > 3 GeV) η η for “back-to-back” events with 30 < E T (jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c. � Compares the ( uncorrected ) data with PYTHIA Tune A after CDFSIM. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 52 Trieste, November 23, 2015

  38. Jet Multiplicity Jet Multiplicity Max p T in the Jet Multiplicity Jet Multiplicity Jet Multiplicity “transverse” region! 50% 50% 50% Jet #1 Direction CDF Run 2 Pre-Preliminary CDF Run 2 Pre-Preliminary CDF Run 2 Pre-Preliminary Data Data Data ∆φ ∆φ ∆φ ∆φ PY Tune A HERWIG data uncorrected data uncorrected data uncorrected 40% 40% 40% theory + CDFSIM theory + CDFSIM theory + CDFSIM “Toward” Percent of Events Percent of Events Percent of Events Back-to-Back Back-to-Back Back-to-Back 30% 30% 30% “TransMAX” “TransMIN” 30 < ET(jet#1) < 70 GeV 30 < ET(jet#1) < 70 GeV 30 < ET(jet#1) < 70 GeV PTmaxT > 2.0 GeV/c PTmaxT > 2.0 GeV/c PTmaxT > 2.0 GeV/c PTmaxT “Away” 20% 20% 20% HERWIG ( without multiple parton Jet #2 Direction 10% 10% 10% interactions ) does not have equal amounts of 3 and 4 jet topologies! 0% 0% 0% 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 Data have about equal amounts Number of Jets Number of Jets Number of Jets of 3 and 4 jet topologies! � Shows the data on the number of jets (JetClu, R = 0.7, | η η | < 2, E T (jet) > 3 GeV) η η for “back-to-back” events with 30 < E T (jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c. � Compares the ( uncorrected ) data with PYTHIA Tune A after CDFSIM. � Compares the ( uncorrected ) data with HERWIG (no MPI) after CDFSIM. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 53 Trieste, November 23, 2015

  39. Tuned JIMMY versus Tuned JIMMY versus PYTHIA Tune A PYTHIA Tune A JIMMY tuned to agree with PYTHIA Tune A! Jon Butterworth Jeff Forshaw Charged PTsum Density: dPT/d η η d φ Charged PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ Mike Seymour 100.0 100.0 RDF Preliminary Charged Particles PT(jet#1) > 30 GeV/c Leading Jet 30 < ET(jet#1) < 70 GeV Charged Particles Charged PTsum Density (GeV/c) (| η η |<1.0, PT>0.5 GeV/c) generator level η η Charged PTsum Density (GeV/c) PY Tune A (| η η η η |<1.0, PT>0.5 GeV/c) PYA TOT JM TOT 10.0 10.0 JM 2-to-2 JM ISR "Transverse" Region JM MPI 1.0 1.0 CDF Preliminary Jet#1 "Transverse" Jet#1 data uncorrected Region theory + CDFSIM 0.1 0.1 0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360 ∆φ (degrees) ∆φ ∆φ ∆φ ∆φ (degrees) ∆φ ∆φ ∆φ � ( left ) Shows the Run 2 data on the ∆φ ∆φ ∆φ dependence of the charged scalar PTsum density (| η ∆φ η η η |<1, p T >0.5 GeV/c) relative to the leading jet for 30 < E T (jet#1) < 70 GeV/c compared with PYTHIA Tune A ( after CDFSIM ). � ( right ) Shows the generator level predictions of PYTHIA Tune A and a tuned version of JIMMY (PT min =1.8 GeV/c) for the ∆φ ∆φ ∆φ dependence of the charged scalar PTsum density (| η ∆φ η |<1, p T >0.5 GeV/c) η η relative to the leading jet for PT(jet#1) > 30 GeV/c. The tuned JIMMY and PYTHIA Tune A agree in the “transverse” region. � ( right ) For JIMMY the contributions from the multiple parton interactions (MPI), initial-state radiation (ISR), and the 2-to-2 hard scattering plus finial-state radiation (2-to-2+FSR) are shown. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 54 Trieste, November 23, 2015

  40. The New Forefront The New Forefront � The forefront of science is moving from the US to CERN (Geneva, Switzerland). Proton Proton 13 TeV � The LHC is designed to collide protons with protons at a center-of-mass energy of 14 TeV (seven times greater energy than Fermilab)! MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 55 Trieste, November 23, 2015

  41. Min- -Bias Bias “ “Associated Associated” ” Min Charged Particle Density Charged Particle Density "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 1.2 RDF Preliminary 14 TeV Min-Bias "Transverse" Charged Density py Tune DW generator level 0.8 ~1.9 1.96 TeV 0.4 ~2.7 0.2 TeV Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.0 0 5 10 15 20 25 PTmax (GeV/c) PTmax Direction PTmax Direction PTmax Direction 0.2 TeV → 1.96 TeV 1.96 TeV → 14 TeV ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ (UE increase ~2.7 times) (UE increase ~1.9 times) “Toward” “Toward” “Toward” RHIC LHC Tevatron “Transverse” “Transverse” “Transverse” “Transverse” “Transverse” “Transverse” “Away” “Away” “Away” � Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (p T > 0.5 GeV/c, | η η η | < 1, not including PTmax ) for “min-bias” events at 0.2 η TeV, 1.96 TeV and 14 TeV predicted by PYTHIA Tune DW at the particle level ( i.e. generator level). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 56 Trieste, November 23, 2015

  42. st Workshop on Energy Scaling 1 st Workshop on Energy Scaling 1 in Hadron- -Hadron Collisions Hadron Collisions in Hadron Peter Skands! Renee Fatemi gave a talk on the “underlying event at STAR! “On the Boarder” restaurant, Aurora, IL April 27, 2009 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 57 Trieste, November 23, 2015

  43. The “ “Underlying Event Underlying Event” ” at STAR at STAR The � At STAR they have measured the “underlying event at W = 200 GeV (| η η η η | < 1, p T > 0.2 GeV) and compared their uncorrected data with PYTHIA Tune A + STAR-SIM. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 58 Trieste, November 23, 2015

  44. The “ “Underlying Event Underlying Event” ” at STAR at STAR The � At STAR they have measured the “underlying event at W = 200 GeV (| η η η η | < 1, p T > 0.2 GeV) and compared their uncorrected data with PYTHIA Tune A + STAR-SIM. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 59 Trieste, November 23, 2015

  45. Min- -Bias Bias “ “Associated Associated” ” Min Charged Particle Density Charged Particle Density "Transverse" Charged Particle Density: dN/d η η η η d φ φ φ φ "Transverse" Charged Particle Density: dN/d η η η η d φ φ φ φ 1.2 1.2 RDF Preliminary 14 TeV Min-Bias RDF Preliminary "Transverse" Charged Density LHC14 "Transverse" Charged Density py Tune DW generator level py Tune DW generator level 10 TeV 7 TeV LHC10 0.8 0.8 LHC7 1.96 TeV 0.9 TeV Tevatron 0.4 0.4 900 GeV 0.2 TeV PTmax = 5.25 GeV/c RHIC Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 0 5 10 15 20 25 Center-of-Mass Energy (TeV) PTmax (GeV/c) PTmax Direction PTmax Direction PTmax Direction 0.2 TeV → 1.96 TeV 1.96 TeV → 14 TeV ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ (UE increase ~2.7 times) (UE increase ~1.9 times) “Toward” “Toward” “Toward” RHIC LHC Tevatron “Transverse” “Transverse” “Transverse” “Transverse” “Transverse” “Transverse” “Away” “Away” “Away” � Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (p T > 0.5 GeV/c, | η η | < 1, not including PTmax ) for “min-bias” events at 0.2 η η TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle Linear scale! level ( i.e. generator level). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 60 Trieste, November 23, 2015

  46. Min- -Bias Bias “ “Associated Associated” ” Min Charged Particle Density Charged Particle Density "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 1.2 1.2 RDF Preliminary 14 TeV Min-Bias RDF Preliminary "Transverse" Charged Density "Transverse" Charged Density py Tune DW generator level py Tune DW generator level 10 TeV LHC14 7 TeV LHC10 0.8 0.8 LHC7 1.96 TeV Tevatron 0.9 TeV 0.4 0.4 900 GeV 0.2 TeV PTmax = 5.25 GeV/c RHIC Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η Charged Particles (| η η |<1.0, PT>0.5 GeV/c) η η 0.0 0.0 0.1 1.0 10.0 100.0 0 5 10 15 20 25 Center-of-Mass Energy (TeV) PTmax (GeV/c) PTmax Direction PTmax Direction ∆φ ∆φ 7 TeV → 14 TeV ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ (UE increase ~20%) “Toward” “Toward” LHC7 LHC14 “Transverse” “Transverse” “Transverse” “Transverse” Linear on a log plot! “Away” “Away” � Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (p T > 0.5 GeV/c, | η η | < 1, not including PTmax ) for “min-bias” events at 0.2 η η TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle Log scale! level ( i.e. generator level). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 61 Trieste, November 23, 2015

  47. UE&MB@CMS UE&MB@CMS Initial Group Members Rick Field (Florida) Darin Acosta (Florida) Paolo Bartalini (Florida) PTDR Volume 2 Section 3.3.2 Albert De Roeck (CERN) Livio Fano' (INFN/Perugia at CERN) Filippo Ambroglini (INFN/Perugia at CERN) Khristian Kotov (UF Student, Acosta) � Measure Min-Bias and the “Underlying Event” at CMS Perugia, Italy, March 2006 � The plan involves two phases. � Phase 1 would be to measure min-bias and the “underlying event” as soon as possible (when the luminosity is low), perhaps during UE&MB@CMS UE&MB@CMS commissioning. We would then tune the QCD Monte-Carlo models for all the other CMS analyses. Phase 1 would be a service to the Florida-Perugia-CERN rest of the collaboration. As the measurements become more reliable we would re-tune the QCD Monte-Carlo models if necessary and begin Phase 2. � Phase 2 is “physics” and would include comparing the min-bias and “underlying event” measurements at the LHC with the measurements we have done (and are doing now) at CDF and then writing a physics publication. University of Perugia MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 62 Trieste, November 23, 2015

  48. UE&MB@CMS UE&MB@CMS Initial Group Members Rick Field (Florida) Darin Acosta (Florida) Paolo Bartalini (Florida) PTDR Volume 2 Section 3.3.2 Albert De Roeck (CERN) Livio Fano' (INFN/Perugia at CERN) Filippo Ambroglini (INFN/Perugia at CERN) Khristian Kotov (UF Student, Acosta) � Measure Min-Bias and the “Underlying Event” at CMS Perugia, Italy, March 2006 � The plan involves two phases. � Phase 1 would be to measure min-bias and the “underlying event” as soon as possible (when the luminosity is low), perhaps during UE&MB@CMS UE&MB@CMS commissioning. We would then tune the QCD Monte-Carlo models for all the other CMS analyses. Phase 1 would be a service to the Florida-Perugia-CERN rest of the collaboration. As the measurements become more reliable we would re-tune the QCD Monte-Carlo models if necessary and begin Phase 2. � Phase 2 is “physics” and would include comparing the min-bias and “underlying event” measurements at the LHC with the measurements we have done (and are doing now) at CDF and then writing a physics publication. University of Perugia MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 63 Trieste, November 23, 2015

  49. UE&MB@CMS UE&MB@CMS Initial Group Members Rick Field (Florida) Darin Acosta (Florida) Paolo Bartalini (Florida) PTDR Volume 2 Section 3.3.2 Albert De Roeck (CERN) Livio Fano' (INFN/Perugia at CERN) Filippo Ambroglini (INFN/Perugia at CERN) Khristian Kotov (UF Student, Acosta) � Measure Min-Bias and the “Underlying Event” at CMS Perugia, Italy, March 2006 � The plan involves two phases. � Phase 1 would be to measure min-bias and the “underlying event” as soon as possible (when the luminosity is low), perhaps during UE&MB@CMS UE&MB@CMS commissioning. We would then tune the QCD Monte-Carlo models for all the other CMS analyses. Phase 1 would be a service to the Florida-Perugia-CERN rest of the collaboration. As the measurements become more reliable we would re-tune the QCD Monte-Carlo models if necessary and begin Phase 2. � Phase 2 is “physics” and would include comparing the min-bias and “underlying event” measurements at the LHC with the measurements we have done (and are doing now) at CDF and then writing a physics publication. University of Perugia MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 64 Trieste, November 23, 2015

  50. MB&UE Working Group MB & UE Common Plots CMS ATLAS � The LPCC MB&UE Working Group has suggested several MB&UE “Common Plots” the all the LHC groups can produce and compare with each other. Outgoing Parton “Minimum Bias” Collisions PT(hard) Initial-State Radiation Proton Proton Proton Proton Underlying Event Underlying Event Final-State Radiation Outgoing Parton MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 65 Trieste, November 23, 2015

  51. “Transverse Transverse” ” Charged Particle Density Charged Particle Density “ PT(chgjet#1) Direction "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ ∆φ ∆φ ∆φ ∆φ 0.8 RDF Preliminary "Transverse" Charged Density Fake Data ChgJet#1 pyDW generator level “Toward” 0.6 PTmax “Transverse” “Transverse” 0.4 “Away” 0.2 900 GeV Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 PTmax Direction 0 2 4 6 8 10 12 14 16 18 ∆φ ∆φ ∆φ ∆φ PTmax or PT(chgjet#1) (GeV/c) � Fake data (from MC) at 900 GeV on the “Toward” “transverse” charged particle density, dN/d η η η d φ η φ φ , as defined by the leading charged φ “Transverse” “Transverse” particle (PTmax) and the leading charged “Away” particle jet (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η η | < 2. The fake η data (from PYTHIA Tune DW) are generated at the particle level ( i.e. generator Rick Field MB&UE@CMS Workshop level) assuming 0.5 M min-bias events at CERN, November 6, 2009 900 GeV (361,595 events in the plot). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 66 Trieste, November 23, 2015

  52. “Transverse Transverse” ” Charged Particle Density Charged Particle Density “ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 0.8 0.8 RDF Preliminary CMS Preliminary "Transverse" Charged Density "Transverse" Charged Density Fake Data ChgJet#1 ChgJet#1 data uncorrected pyDW generator level pyDW + SIM 0.6 0.6 PTmax PTmax 0.4 0.4 0.2 0.2 900 GeV 900 GeV Charged Particles (| η η η η |<2.0, PT>0.5 GeV/c) Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 PTmax or PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Fake data (from MC) at 900 GeV on the � CMS preliminary data at 900 GeV on the “transverse” charged particle density, “transverse” charged particle density, dN/d η η d φ η η φ φ , as defined by the leading charged φ dN/d η η d φ φ , as defined by the leading charged η η φ φ particle (PTmax) and the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles particle jet (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η η | < 2. The fake η with p T > 0.5 GeV/c and | η η | < 2. The data are η η data (from PYTHIA Tune DW) are uncorrected and compared with PYTHIA generated at the particle level ( i.e. generator Tune DW after detector simulation (216,215 level) assuming 0.5 M min-bias events at events in the plot). 900 GeV (361,595 events in the plot). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 67 Trieste, November 23, 2015

  53. “Transverse Transverse” ” Charged Charged PTsum PTsum Density Density “ "Transverse" Charged PTsum Density: dPT/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 0.8 0.8 CMS Preliminary RDF Preliminary ChgJet#1 data uncorrected Fake Data ChgJet#1 PTsum Density (GeV/c) pyDW + SIM PTsum Density (GeV/c) pyDW generator level 0.6 0.6 PTmax PTmax 0.4 0.4 0.2 0.2 900 GeV 900 GeV Charged Particles (| η η η |<2.0, PT>0.5 GeV/c) η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 PTmax or PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Fake data (from MC) at 900 GeV on the � CMS preliminary data at 900 GeV on the “transverse” charged PTsum density, “transverse” charged PTsum density, dPT/d η η d φ φ , as defined by the leading charged dPT/d η η d φ φ , as defined by the leading charged η η φ φ η η φ φ particle (PTmax) and the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles particle jet (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η η | < 2. The fake η with p T > 0.5 GeV/c and | η η η | < 2. The data are η data (from PYTHIA Tune DW) are generated uncorrected and compared with PYTHIA at the particle level ( i.e. generator level) Tune DW after detector simulation (216,215 assuming 0.5 M min-bias events at 900 GeV events in the plot). (361,595 events in the plot). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 68 Trieste, November 23, 2015

  54. PYTHIA Tune DW PYTHIA Tune DW "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 1.2 1.2 CMS Preliminary RDF Preliminary "Transverse" Charged Density 7 TeV 7 TeV data uncorrected ATLAS corrected data Charged Particle Density pyDW + SIM Tune DW generator level 0.8 0.8 CMS ATLAS 900 GeV 900 GeV 0.4 0.4 Charged Particles (| η η |<2.5, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40 45 50 PTmax (GeV/c) PT(chgjet#1) GeV/c � CMS preliminary data at 900 GeV and 7 TeV � ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, on the “transverse” charged particle density, dN/d η η d φ η η φ φ , as defined by the leading charged φ dN/d η η d φ φ , as defined by the leading charged η η φ φ particle jet (chgjet#1) for charged particles with particle (PTmax) for charged particles with p T > p T > 0.5 GeV/c and | η η | < 2. The data are η η 0.5 GeV/c and | η η | < 2.5. The data are corrected η η uncorrected and compared with PYTHIA Tune and compared with PYTHIA Tune DW at the DW after detector simulation. generator level. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 69 Trieste, November 23, 2015

  55. PYTHIA Tune DW PYTHIA Tune DW "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ 1.6 1.5 Charged PTsum Density (GeV/c) CMS Preliminary RDF Preliminary 7 TeV 7 TeV data uncorrected ATLAS corrected data PTsum Density (GeV/c) pyDW + SIM Tune DW generator level 1.2 1.0 0.8 CMS ATLAS 900 GeV 900 GeV 0.5 0.4 Charged Particles (| η η |<2.5, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40 45 50 PTmax (GeV/c) PT(chgjet#1) (GeV/c) � CMS preliminary data at 900 GeV and 7 � ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged PTsum TeV on the “transverse” charged PTsum density, dPT/d η η d φ η η φ φ φ , as defined by the leading density, dPT/d η η d φ φ , as defined by the η η φ φ charged particle jet (chgjet#1) for charged leading charged particle (PTmax) for particles with p T > 0.5 GeV/c and | η η | < 2. The η η charged particles with p T > 0.5 GeV/c and | η η η η | < 2.5. The data are corrected and data are uncorrected and compared with PYTHIA Tune DW after detector simulation. compared with PYTHIA Tune DW at the generator level. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 70 Trieste, November 23, 2015

  56. “Transverse Transverse” ” Charge Density Charge Density “ "Transverse" Charged Particle Density: dN/d η η η d φ η φ φ φ Rick Field 1.2 MB&UE@CMS Workshop RDF Preliminary "Transverse" Charged Density py Tune DW generator level CERN, November 6, 2009 7 TeV 0.8 factor of 2! 900 GeV 0.4 Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0 2 4 6 8 10 12 14 16 18 20 PTmax (GeV/c) PTmax Direction PTmax Direction 900 GeV → 7 TeV ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ (UE increase ~ factor of 2) “Toward” “Toward” LHC LHC “Transverse” “Transverse” “Transverse” “Transverse” 900 GeV 7 TeV ~0.4 → ~0.8 “Away” “Away” � Shows the charged particle density in the “transverse” region for charged particles (p T > 0.5 GeV/c, | η η | < 2) at 900 GeV and 7 TeV as defined by PTmax from PYTHIA Tune DW and at the η η particle level ( i.e. generator level). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 71 Trieste, November 23, 2015

  57. PYTHIA Tune DW PYTHIA Tune DW "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 3.0 3.0 RDF Preliminary CMS Preliminary ATLAS corrected data data uncorrected Ratio: 7 TeV/900 GeV Ratio: 7 TeV/900 GeV pyDW generator level pyDW + SIM 2.0 2.0 CMS ATLAS 1.0 1.0 7 TeV / 900 GeV 7 TeV / 900 GeV Charged Particles (| η η η η |<2.0, PT>0.5 GeV/c) Charged Particles (| η η |<2.5, PT>0.5 GeV/c) η η 0.0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 0 2 4 6 8 10 12 14 16 18 PTmax (GeV/c) PT(chgjet#1) (GeV/c) � CMS preliminary data at 900 GeV and 7 � ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle TeV on the “transverse” charged particle density, dN/d η η d φ η η φ φ , as defined by the leading φ density, dN/d η η η η d φ φ φ φ , as defined by the leading charged particle jet (chgjet#1) for charged charged particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η | < 2. The η η particles with p T > 0.5 GeV/c and | η η | < 2.5. η η data are uncorrected and compared with The data are corrected and compared with PYTHIA Tune DW after detector simulation. PYTHIA Tune DW at the generator level. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 72 Trieste, November 23, 2015

  58. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ η η φ φ φ 1.2 1.2 CMS Preliminary CMS Preliminary D6T 7 TeV 7 TeV data uncorrected Charged Particle Density data uncorrected Charged Particle Density pyZ1 + SIM Theory + SIM 0.8 0.8 900 GeV 900 GeV DW 0.4 0.4 CMS CMS Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PT(chgjet#1) GeV/c PT(chgjet#1) GeV/c � CMS preliminary data at 900 GeV and 7 � CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle TeV on the “transverse” charged particle density, dN/d η η η η d φ φ φ φ , as defined by the leading density, dN/d η η η η d φ φ φ φ , as defined by the leading charged particle jet (chgjet#1) for charged charged particle jet (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η η η | < 2.0. particles with p T > 0.5 GeV/c and | η η η η | < 2.0. The data are uncorrected and compared with The data are uncorrected and compared with PYTHIA Tune DW and D6T after detector PYTHIA Tune Z1 after detector simulation simulation (SIM). (SIM). Tune Z1 (CTEQ5L) Color reconnection suppression. PARP(82) = 1.932 Color reconnection strength. Tune Z1 is a PYTHIA 6.4 using PARP(90) = 0.275 p T -ordered parton showers and PARP(77) = 1.016 the new MPI model! PARP(78) = 0.538 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 73 Trieste, November 23, 2015

  59. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged PTsum Density: dPT/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 1.6 1.6 Charged PTsum Density (GeV/c) Charged PTsum Density (GeV/c) CMS Preliminary CMS Preliminary D6T 7 TeV 7 TeV data uncorrected data uncorrected pyZ1 + SIM 1.2 Theory + SIM 1.2 0.8 0.8 DW 900 GeV 900 GeV CMS CMS 0.4 0.4 Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η Charged Particles (| η η η |<2.0, PT>0.5 GeV/c) η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PT(chgjet#1) (GeV/c) PT(chgjet#1) (GeV/c) � CMS preliminary data at 900 GeV and 7 � CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged PTsum TeV on the “transverse” charged PTsum density, dPT/d η η d φ φ , as defined by the leading η η φ φ density, dPT/d η η η d φ η φ φ , as defined by the leading φ charged particle jet (chgjet#1) for charged charged particle jet (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η η | < 2.0. η particles with p T > 0.5 GeV/c and | η η η η | < 2.0. The data are uncorrected and compared with The data are uncorrected and compared with PYTHIA Tune DW and D6T after detector PYTHIA Tune Z1 after detector simulation simulation (SIM). (SIM). Tune Z1 (CTEQ5L) Color reconnection suppression. PARP(82) = 1.932 Color reconnection strength. Tune Z1 is a PYTHIA 6.4 using PARP(90) = 0.275 PARP(77) = 1.016 p T -ordered parton showers and the new MPI model! PARP(78) = 0.538 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 74 Trieste, November 23, 2015

  60. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged Particle Density: dN/d η η d φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ η η φ φ φ 1.2 1.5 RDF Preliminary RDF Preliminary "Transverse" Charged Density 7 TeV 7 TeV ATLAS corrected data ATLAS corrected data PTsum Density (GeV/c) Tune Z1 generator level Tune Z1 generator level 0.8 1.0 900 GeV 900 GeV 0.4 0.5 ATLAS ATLAS Charged Particles (| η η |<2.5, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.5, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 PTmax (GeV/c) PTmax (GeV/c) � ATLAS preliminary data at 900 GeV and 7 � ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle TeV on the “transverse” charged PTsum density, dN/d η η d φ φ , as defined by the leading η η φ φ density, dPT/d η η η η d φ φ φ , as defined by the leading φ charged particle (PTmax) for charged charged particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η η | < 2.5. η particles with p T > 0.5 GeV/c and | η η η | < 2.5. η The data are corrected and compared with The data are corrected and compared with PYTHIA Tune Z1 at the generator level. PYTHIA Tune Z1 at the generrator level. Tune Z1 (CTEQ5L) Color reconnection suppression. PARP(82) = 1.932 Color reconnection strength. PARP(90) = 0.275 Tune Z1 is a PYTHIA 6.4 using PARP(77) = 1.016 p T -ordered parton showers and PARP(78) = 0.538 the new MPI model! MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 75 Trieste, November 23, 2015

  61. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ η η φ φ φ 3.0 3.0 CMS Preliminary CMS Preliminary DW D6T data uncorrected data uncorrected Ratio: 7 TeV/900 GeV Ratio: 7 TeV/900 GeV theory + SIM pyZ1 + SIM 2.0 2.0 P0 1.0 1.0 CW CMS CMS 7 TeV / 900 GeV 7 TeV / 900 GeV Charged Particles (| η η |<2.0, PT>0.5 GeV/c) Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 PT(chgjet#1) (GeV/c) PT(chgjet#1) (GeV/c) � Ratio of CMS preliminary data at 900 GeV � Ratio of CMS preliminary data at 900 GeV and 7 TeV (7 TeV divided by 900 GeV) on the and 7 TeV (7 TeV divided by 900 GeV) on the “transverse” charged particle density as “transverse” charged particle density as defined by the leading charged particle jet defined by the leading charged particle jet (chgjet#1) for charged particles with p T > 0.5 (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η | < 2.0. The data are η η GeV/c and | η η | < 2.0. The data are η η uncorrected and compared with PYTHIA uncorrected and compared with PYTHIA Tune DW, D6T, CW, and P0 after detector Tune Z1 after detector simulation (SIM). simulation (SIM). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 76 Trieste, November 23, 2015

  62. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ 3.0 3.0 D6T CMS Preliminary CMS Preliminary DW data uncorrected data uncorrected Ratio: 7 TeV/900 GeV Ratio: 7 TeV/900 GeV theory + SIM pyZ1 + SIM 2.0 2.0 P0 CW 1.0 1.0 CMS CMS 7 TeV / 900 GeV Charged Particles (| η η |<2.0, PT>0.5 GeV/c) 7 TeV / 900 GeV η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 PT(chgjet#1) (GeV/c) PT(chgjet#1) (GeV/c) � Ratio of CMS preliminary data at 900 GeV � Ratio of CMS preliminary data at 900 GeV and 7 TeV (7 TeV divided by 900 GeV) on the and 7 TeV (7 TeV divided by 900 GeV) on the “transverse” charged PTsum density as “transverse” charged PTsum density as defined by the leading charged particle jet defined by the leading charged particle jet (chgjet#1) for charged particles with p T > 0.5 (chgjet#1) for charged particles with p T > 0.5 GeV/c and | η η | < 2.0. The data are η η GeV/c and | η η | < 2.0. The data are η η uncorrected and compared with PYTHIA uncorrected and compared with PYTHIA Tune DW, D6T, CW, and P0 after detector Tune Z1 after detector simulation (SIM). simulation (SIM). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 77 Trieste, November 23, 2015

  63. PYTHIA Tune Z1 PYTHIA Tune Z1 "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 4.0 4.0 RDF Preliminary RDF Preliminary ATLAS corrected data ATLAS corrected data Ratio: 7 TeV/900 GeV Ratio: 7 TeV/900 GeV Tune Z1 generator level Tune Z1 generator level 3.0 3.0 2.0 2.0 ATLAS 1.0 1.0 ATLAS 7 TeV / 900 GeV 7 TeV / 900 GeV Charged Particles (| η η |<2.5, PT>0.5 GeV/c) Charged Particles (| η η η |<2.5, PT>0.5 GeV/c) η η η 0.0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 PTmax (GeV/c) PTmax (GeV/c) � Ratio of the ATLAS preliminary data on the � Ratio of the ATLAS preliminary data on the charged particle density in the “transverse” charged PTsum density in the “transverse” region for charged particles (p T > 0.5 GeV/c, region for charged particles (p T > 0.5 GeV/c, | η η η | < 2.5) at 900 GeV and 7 TeV as defined by η | η η | < 2.5) at 900 GeV and 7 TeV as defined by η η PTmax compared with PYTHIA Tune Z1 at PTmax compared with PYTHIA Tune Z1 at the generator level. the generator level. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 78 Trieste, November 23, 2015

  64. CMS Common Plots CMS Common Plots Observable 900 GeV 7 TeV MB1: dN chg /d η η η N chg ≥ 1 η Done Done | η η | < 0.8 p T > 0.5 Gev/c & 1.0 GeV/c η η QCD-10-024 QCD-10-024 MB2: dN chg /dp T N chg ≥ 1 | η η η | < 0.8 η Stalled Stalled MB3: Multiplicity Distribution Stalled Stalled | η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η η MB4: <p T > versus Nchg Stalled Stalled | η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η η UE1: Transverse Nchg & PTsum as defined by the leading charged Done Done particle, PTmax FSQ-12-020 FSQ-12-020 | η η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η Direct charged particles (including leptons) corrected to the particle level with no corrections for SD or DD. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 79 Trieste, November 23, 2015

  65. CMS Common Plots CMS Common Plots Observable 900 GeV 7 TeV MB1: dN chg /d η η N chg ≥ 1 η η Done Done | η η | < 0.8 p T > 0.5 Gev/c & 1.0 GeV/c η η QCD-10-024 QCD-10-024 MB2: dN chg /dp T N chg ≥ 1 | η η | < 0.8 η η Stalled Stalled Note that all the “common plots” require MB3: Multiplicity Distribution Stalled Stalled at least one charged particle with | η η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η p T > 0.5 GeV/c and | η η | < 0.8! η η MB4: <p T > versus Nchg This was done so that the plots are Stalled Stalled | η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η η less sensitive to SD and DD. UE1: Transverse Nchg & PTsum as defined by the leading charged Done Done particle, PTmax FSQ-12-020 FSQ-12-020 | η η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η Direct charged particles (including leptons) corrected to the particle level with no corrections for SD or DD. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 80 Trieste, November 23, 2015

  66. CDF Common Plots CDF Common Plots Observable 300 GeV 900 GeV 1.96 TeV MB1: dN chg /d η η N chg ≥ 1 η η Done Done Done | η η η | < 0.8 p T > 0.5 Gev/c & 1.0 GeV/c η MB2: dN chg /dp T N chg ≥ 1 | η η | < 0.8 η η Stalled Stalled Stalled MB3: Multiplicity Distribution Stalled Stalled Stalled | η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η η MB4: <p T > versus Nchg Stalled Stalled Stalled | η η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η UE1: Transverse Nchg & PTsum as defined by the leading charged p T > 0.5 GeV/c p T > 0.5 GeV/c p T > 0.5 GeV/c particle, PTmax Done Done Done | η η η | < 0.8 p T > 0.5 GeV/c & 1.0 GeV/c η Direct charged particles (including leptons) corrected to the particle level with no corrections for SD or DD. R. Field, C. Group, and D. Wilson. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 81 Trieste, November 23, 2015

  67. UE Common Plots UE Common Plots "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ η η φ φ φ 1.5 1.6 RDF Preliminary RDF Preliminary "Transverse" Charged Density corrected data corrected data PTsum Density (GeV/c) 1.2 1.0 0.8 0.5 7 TeV 0.4 7 TeV ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η ALICE (open black) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 PTmax (GeV/c) PTmax (GeV/c) "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ φ η η φ φ 0.8 0.8 RDF Preliminary RDF Preliminary "Transverse" Charged Density corrected data corrected data PTsum Density (GeV/c) 0.6 0.6 0.4 0.4 0.2 0.2 900 GeV 900 GeV ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η ALICE (open black) 0.0 0.0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 PTmax (GeV/c) PTmax (GeV/c) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 82 Trieste, November 23, 2015

  68. UE Common Plots UE Common Plots "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η η η d φ φ φ φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 1.5 1.6 1.6 1.5 RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary "Transverse" Charged Density "Transverse" Charged Density corrected data corrected data corrected data corrected data PTsum Density (GeV/c) PTsum Density (GeV/c) 1.2 1.2 1.0 1.0 0.8 0.8 0.5 7 TeV 7 TeV 0.5 0.4 0.4 7 TeV CMS (solid red) CMS (solid red) 7 TeV ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) Charged Particles (| η η η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η ALICE (open black) ALICE (open black) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η 0.0 0.0 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ φ η η φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 0.8 0.8 0.8 0.8 RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary "Transverse" Charged Density corrected data "Transverse" Charged Density corrected data corrected data corrected data PTsum Density (GeV/c) PTsum Density (GeV/c) 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 900 GeV CMS (solid red) CMS (solid red) 900 GeV 900 GeV ATLAS (solid blue) 900 GeV ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η ALICE (open black) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η Charged Particles (| η η η | < 0.8, PT > 0.5 GeV/c) η ALICE (open black) ALICE (open black) 0.0 0.0 0.0 0.0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 83 Trieste, November 23, 2015

  69. UE Common Plots UE Common Plots "Transverse" Charged Particle Density: dN/d η η d φ "Transverse" Charged PTsum Density: dPT/d η η d φ "Transverse" Charged Particle Density: dN/d η η η d φ η φ φ φ "Transverse" Charged PTsum Density: dPT/d η "Transverse" Charged PTsum Density: dPT/d η η η η d φ η d φ φ φ φ η η φ φ φ η η η η φ φ φ φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 1.5 1.6 1.5 1.6 1.6 1.5 RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary "Transverse" Charged Density "Transverse" Charged Density "Transverse" Charged Density corrected data corrected data corrected data corrected data corrected data corrected data Tune Z1 generator level PTsum Density (GeV/c) Tune Z1 generator level PTsum Density (GeV/c) PTsum Density (GeV/c) 1.2 1.2 1.2 1.0 1.0 1.0 0.8 0.8 0.8 0.5 7 TeV 0.5 7 TeV 7 TeV 0.5 0.4 0.4 0.4 CMS (solid red) 7 TeV CMS (solid red) CMS (solid red) CMS (solid red) 7 TeV 7 TeV ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) Charged Particles (| η Charged Particles (| η η η η | < 0.8, PT > 0.5 GeV/c) η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) η η η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) ALICE (open black) η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) ALICE (open black) ALICE (open black) Charged Particles (| η η η η | < 0.8, PT > 0.5 GeV/c) η η 0.0 0.0 0.0 0.0 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 0 5 5 10 10 15 15 20 20 25 25 30 30 0 5 10 15 20 25 30 PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ φ η η φ φ "Transverse" Charged Particle Density: dN/d η η d φ φ "Transverse" Charged PTsum Density: dPT/d η η η d φ η φ φ φ η η φ φ "Transverse" Charged PTsum Density: dPT/d η η d φ η η φ φ φ "Transverse" Charged Particle Density: dN/d η η d φ η η φ φ φ 0.8 0.8 0.8 0.8 0.8 0.8 RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary "Transverse" Charged Density "Transverse" Charged Density corrected data "Transverse" Charged Density corrected data corrected data corrected data corrected data corrected data PTsum Density (GeV/c) Tune Z1 generator level PTsum Density (GeV/c) Tune Z1 generator level PTsum Density (GeV/c) 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 CMS (solid red) CMS (solid red) 900 GeV CMS (solid red) CMS (solid red) 900 GeV 900 GeV 900 GeV 900 GeV ATLAS (solid blue) 900 GeV ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) ATLAS (solid blue) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) ALICE (open black) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) η η η η ALICE (open black) Charged Particles (| η η | < 0.8, PT > 0.5 GeV/c) Charged Particles (| η η η η | < 0.8, PT > 0.5 GeV/c) η η ALICE (open black) Charged Particles (| η η η | < 0.8, PT > 0.5 GeV/c) η ALICE (open black) ALICE (open black) ALICE (open black) 0.0 0.0 0.0 0.0 0.0 0.0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 84 Trieste, November 23, 2015

  70. CDF versus LHC CDF versus CMS CDF versus LHC CDF versus CMS "TransAVE" Charged Particle Density: dN/d η η d φ η η φ φ φ "TransAVE" Charged PTsum Density: dPT/d η η d φ η η φ φ φ 0.75 0.78 RDF Preliminary RDF Preliminary corrected data corrected data CDF CDF Charged Particle Density PTsum Density (GeV/c) 0.50 0.52 0.25 0.26 CMS CMS 900 GeV 900 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η η η 0.00 0.00 0 4 8 12 16 20 0 4 8 12 16 20 PTmax (GeV/c) PTmax (GeV/c) � CDF and CMS data at 900 GeV/c on the � CDF and CMS data at 900 GeV/c on the charged PTsum density in the “transverse” charged particle density in the “transverse” region as defined by the leading charged region as defined by the leading charged particle (PTmax) for charged particles with particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η η η | < 0.8. The data are p T > 0.5 GeV/c and | η η | < 0.8. The data are η η corrected to the particle level with errors that corrected to the particle level with errors that include both the statistical error and the include both the statistical error and the systematic uncertainty. systematic uncertainty. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 85 Trieste, November 23, 2015

  71. CDF versus LHC CDF versus CMS CDF versus LHC CDF versus CMS "TransAVE" Charged Particle Density: dN/d η "TransAVE" Charged Particle Density: dN/d η η η d φ η d φ η φ φ φ "TransAVE" Charged PTsum Density: dPT/d η "TransAVE" Charged PTsum Density: dPT/d η η d φ η η η d φ φ φ φ η η φ φ φ η η φ φ φ 0.75 0.78 0.78 0.75 RDF Preliminary RDF Preliminary RDF Preliminary RDF Preliminary corrected data corrected data corrected data CDF CDF CDF CDF corrected data ALICE Charged Particle Density Charged Particle Density PTsum Density (GeV/c) PTsum Density (GeV/c) 0.50 0.52 0.52 0.50 ATLAS ATLAS 0.25 0.26 0.25 0.26 CMS CMS CMS CMS ALICE 900 GeV 900 GeV 900 GeV 900 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η η η Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η 0.00 0.00 0.00 0.00 0 0 4 4 8 8 12 12 16 16 20 20 0 0 4 4 8 8 12 12 16 16 20 20 PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) PTmax (GeV/c) � CDF and CMS data at 900 GeV/c on the � CDF and CMS data at 900 GeV/c on the charged PTsum density in the “transverse” charged particle density in the “transverse” region as defined by the leading charged region as defined by the leading charged particle (PTmax) for charged particles with particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η η η | < 0.8. The data are p T > 0.5 GeV/c and | η η | < 0.8. The data are η η corrected to the particle level with errors that corrected to the particle level with errors that include both the statistical error and the include both the statistical error and the systematic uncertainty. systematic uncertainty. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 86 Trieste, November 23, 2015

  72. CMS Tuning Publication CMS Tuning Publication To appear soon! CMS at the LHC 900 GeV, 2.96 TeV, 7 TeV, 8 TeV, 13 TeV Physics Comparisons & Generstor Tunes Outgoing Parton PT(hard) Initial-State Radiation Proton AntiProton Underlying Event Underlying Event Final-State Radiation Outgoing Parton Hannes Jung, Paolo Gunnellini, Rick Field MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 87 Trieste, November 23, 2015

  73. CMS UE Tunes CMS UE Tunes � PYTHIA 6.4 Tune CUETP6S1-CTEQ6L: Start with Tune Z2*-lep and tune to the PTmax Direction ∆φ ∆φ ∆φ ∆φ CDF PTmax “transMAX” and “transMIN” UE data at 300 GeV, 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE data at 7 TeV. “Toward” � PYTHIA 6.4 Tune CUETP6S1-HERAPDF1.5LO: Start with Tune Z2*-lep and “TransMAX” “TransMIN” tune to the CDF PTmax “transMAX” and “transMIN” UE data at 300 GeV, 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE “Away” data at 7 TeV. � PYTHIA 8 Tune CUETP8S1-CTEQ6L: Start with Corke & Sjöstrand Tune 4C and tune to the CDF PTmax “transMAX” and “transMIN” UE data at 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE data at 7 TeV. Exclude 300 GeV data. � PYTHIA 8 Tune CUETP8S1-HERAPDF1.5LO: Start with Corke & Sjöstrand Tune 4C and tune to the CDF PTmax “transMAX” and “transMIN” UE data at 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE data at 7 TeV. Exclude 300 GeV data. � PYTHIA 8 Tune CUETP8M1-NNPDF2.3LO: Start with the Skands Monash-NNPDF2.3LO tune and tune to the CDF PTmax “transMAX” and “transMIN” UE data at 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE data at 7 TeV. Exclude 300 GeV data. � HERWIG++ Tune CUETHS1-CTEQ6L: Start with the Seymour & Siódmok UE-EE-5C tune and tune to the CDF PTmax “transMAX” and “transMIN” UE data at 900 GeV, and 1.96 TeV and the CMS PTmax “transMAX” and “transMIN” UE data at 7 TeV. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 88 Trieste, November 23, 2015

  74. CUETP8S1- -CTEQ6L CTEQ6L CUETP8S1 "TransAVE" Charged Particle Density "TransAVE" Charged Particle Density 1.2 1.2 7 TeV CMS Tune CUETP8S1-CTEQ6L 7 TeV Tune Z2*-CTEQ6L Charged Particle Density Charged Particle Density 0.8 0.8 1.96 TeV 1.96 TeV 900 GeV 900 GeV 0.4 0.4 Exclude 300 GeV data! 300 GeV 300 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 PTmax (GeV/c) PTmax (GeV/c) � CMS data at 7 TeV and CDF data at 1.96 TeV, � CMS data at 7 TeV and CDF data at 1.96 TeV, 900 GeV, and 300 GeV on the charged particle 900 GeV, and 300 GeV on the charged particle density in the “transAVE” region as defined by density in the “transAVE” region as defined by the leading charged particle (PTmax) for the leading charged particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η | < η η charged particles with p T > 0.5 GeV/c and | η η η | < η 0.8. The data are compared with PYTHIA 6.4 0.8. The data are compared with PYTHIA 8 Tune Z2*. Tune CUETP8S1-CTEQ6L (excludes 300 GeV in fit). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 89 Trieste, November 23, 2015

  75. CUETP8M1- -NNPDF2.3LO NNPDF2.3LO CUETP8M1 "TransAVE" Charged Particle Density "TransAVE" Charged Particle Density 1.2 1.2 Monash-NNPDF2.3LO 7 TeV CUETP8M1-NNPDF2.3LO 7 TeV Charged Particle Density Charged Particle Density 0.8 0.8 1.96 TeV 1.96 TeV 900 GeV 900 GeV 0.4 0.4 Exclude 300 GeV data! 300 GeV 300 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η η η 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 PTmax (GeV/c) PTmax (GeV/c) � CMS data at 7 TeV and CDF data at 1.96 TeV, � CMS data at 7 TeV and CDF data at 1.96 TeV, 900 GeV, and 300 GeV on the charged particle 900 GeV, and 300 GeV on the charged particle density in the “transAVE” region as defined by density in the “transAVE” region as defined by the leading charged particle (PTmax) for the leading charged particle (PTmax) for charged particles with p T > 0.5 GeV/c and | η η | < η η charged particles with p T > 0.5 GeV/c and | η η η η | < 0.8. The data are compared with the PYTHIA 8 0.8. The data are compared with the PYTHIA 8 Tune Monash-NNPDF2.3LO. Tune CUETP8M1-NNPDF2.3LO (excludes 300 GeV in fit). MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 90 Trieste, November 23, 2015

  76. UE@CMS 13 TeV TeV UE@CMS 13 UE@13TeV Livio Fano' (University of Perugia) Diego Ciangottini (University of Perugia) Rick Field (University of Florida) Doug Rank (University of Florida) Sunil Bansal (Panjab University Chandigarh) University of Perugia Wei Yang Wang (National University of Singapore) � Measure the “Underlying Event” at 13 TeV at CMS ChgJet#1 Direction PTmax Direction Measure the UE observables Measure the UE observables ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ ∆φ as defined by the leading as defined by the leading “Toward” “Toward” charged particle, PTmax, for charged particle jet, “TransMAX” “TransMIN” “TransMAX” “TransMIN” charged particles with p T > chgjet#1, for charged 0.5 GeV/c and | η η | < 2.0 and η η “Away” particles with p T > 0.5 GeV/c “Away” | η η | < 0.8. η η and | η η | < 2.0. η η Outgoing Parton PT(hard) Initial-State Radiation Proton Proton UE&MB@CMS UE&MB@CMS Underlying Event Underlying Event Livio & Rick were part of the CMS Run 1 UE&MB team! Final-State Radiation Outgoing Parton MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 91 Trieste, November 23, 2015

  77. ChgJet#1 vs vs PTmax PTmax ChgJet#1 "transAVE" Charged Particle Density "transAVE" Charged PTsum Density 2.1 2.4 CMS Run 2 Preliminary chgjet#1 CMS Run 2 Preliminary 13 TeV 13 TeV Corrected Data (Bayesian Unfolding) Corrected Data (Bayesian Unfolding) Average Density (GeV/c) chgjet#1 Generator Level Theory Generator Level Theory Average Density 1.6 1.4 PTmax PTmax 0.7 0.8 CMS Tune CUETP8S1-CTEQ6L CMS Tune CUETP8S1-CTEQ6L Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 55 PTmax or PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Corrected data (Bayesian unfolding) on the � Corrected data (Bayesian unfolding) on the “transAVE” charged particle density with p T > “transAVE” charged PTsum density with p T > 0.5 GeV/c and | η η η | < 2.0 as defined by the η 0.5 GeV/c and | η η η η | < 2.0 as defined by the leading charged particle, PTmax, and as leading charged particle, PTmax, and as defined by the leading charged particle jet, defined by the leading charged particle jet, chgjet#1. The data are compared with chgjet#1. The data are compared with PYTHIA 8 tune CUETP8S1-CTEQ6L at the PYTHIA 8 tune CUETP8S1-CTEQ6L at the generator level.. generator level.. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 92 Trieste, November 23, 2015

  78. ChgJet#1 vs vs PTmax PTmax ChgJet#1 "transMAX" Charged Particle Density "transMAX" Charged PTsum Density 2.4 3.0 CMS Run 2 Preliminary 13 TeV CMS Run 2 Preliminary 13 TeV chgjet#1 chgjet#1 Corrected Data (Bayesian Unfolding) Average Density (GeV/c) Corrected Data (Bayesian Unfolding) Generator Level Theory Generator Level Theory Average Density 1.6 2.0 PTmax PTmax 0.8 1.0 CMS Tune CUETP8S1-CTEQ6L CMS Tune CUETP8S1-CTEQ6L Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PTmax or PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Corrected data (Bayesian unfolding) on the � Corrected data (Bayesian unfolding) on the “transMAX” charged particle density with p T > “transMAX” charged PTsum density with p T > 0.5 GeV/c and | η η η | < 2.0 as defined by the η 0.5 GeV/c and | η η η η | < 2.0 as defined by the leading charged particle, PTmax, and as leading charged particle, PTmax, and as defined by the leading charged particle jet, defined by the leading charged particle jet, chgjet#1. The data are compared with chgjet#1. The data are compared with PYTHIA 8 tune CUETP8S1-CTEQ6L at the PYTHIA 8 tune CUETP8S1-CTEQ6L at the generator level.. generator level.. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 93 Trieste, November 23, 2015

  79. ChgJet#1 vs vs PTmax PTmax ChgJet#1 "transMIN" Charged PTsum Density "transMIN" Charged Particle Density 1.8 1.5 CMS Run 2 Preliminary CMS Run 2 Preliminary 13 TeV 13 TeV Corrected Data (Bayesian Unfolding) chgjet#1 Average Density (GeV/c) Corrected Data (Bayesian Unfolding) chgjet#1 Generator Level Theory Generator Level Theory Average Density 1.2 1.0 PTmax PTmax 0.6 0.5 CMS Tune CUETP8S1-CTEQ6L CMS Tune CUETP8S1-CTEQ6L Charged Particles (| η η |<2.0, PT>0.5 GeV/c) Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η η η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 PTmax or PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Corrected data (Bayesian unfolding) on the � Corrected data (Bayesian unfolding) on the “transMIN” charged particle density with p T > “transMIN” charged PTsum density with p T > 0.5 GeV/c and | η η η | < 2.0 as defined by the η 0.5 GeV/c and | η η η η | < 2.0 as defined by the leading charged particle, PTmax, and as leading charged particle, PTmax, and as defined by the leading charged particle jet, defined by the leading charged particle jet, chgjet#1. The data are compared with chgjet#1. The data are compared with PYTHIA 8 tune CUETP8S1-CTEQ6L at the PYTHIA 8 tune CUETP8S1-CTEQ6L at the generator level.. generator level.. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 94 Trieste, November 23, 2015

  80. ChgJet#1 vs vs PTmax PTmax ChgJet#1 "transDIF" Charged Particle Density "transDIF" Charged PTsum Density 1.2 1.8 CMS Run 2 Preliminary CMS Run 2 Preliminary 13 TeV 13 TeV Corrected Data (Bayesian Unfolding) Average Density (GeV/c) Corrected Data (Bayesian Unfolding) Generator Level Theory Generator Level Theory Average Density 0.8 1.2 PTmax chgjet#1 chgjet#1 PTmax 0.4 0.6 CMS Tune CUETP8S1-CTEQ6L CMS Tune CUETP8S1-CTEQ6L Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η Charged Particles (| η η |<2.0, PT>0.5 GeV/c) η η 0.0 0.0 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 PTmax ot PT(chgjet#1) (GeV/c) PTmax or PT(chgjet#1) (GeV/c) � Corrected data (Bayesian unfolding) on the � Corrected data (Bayesian unfolding) on the “transDIF” charged particle density with p T > “transDIF” charged PTsum density with p T > 0.5 GeV/c and | η η η | < 2.0 as defined by the η 0.5 GeV/c and | η η η η | < 2.0 as defined by the leading charged particle, PTmax, and as leading charged particle, PTmax, and as defined by the leading charged particle jet, defined by the leading charged particle jet, chgjet#1. The data are compared with chgjet#1. The data are compared with PYTHIA 8 tune CUETP8S1-CTEQ6L at the PYTHIA 8 tune CUETP8S1-CTEQ6L at the generator level.. generator level.. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 95 Trieste, November 23, 2015

  81. UE Publications UE Publications "Underlying Event" Publications 30 Other CDF 20 Number Many LHC 10 UE Studies 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Year � Publications on the “underlying event” (2000-2015). The Underlying Event in Large Transverse Momentum Charged Jet and Z−boson Production at CDF, R. Field, published in the proceedings of DPF 2000. Charged Jet Evolution and the Underlying Event in Proton-Antiproton Collisions at 1.8 TeV, CDF Collaboration, Phys. Rev. D65 (2002) 092002. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 96 Trieste, November 23, 2015

  82. UE Publications UE Publications HERWIG++ UE Tune, M. Seymour and A. Siódmok ! Monash Tune, "Underlying Event" Publications Peter Skands ! Perugia Tunes, 30 Peter Skands ! Other CDF 20 Gavin Salam! Number Many LHC 10 UE Studies 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Year A Study of the Energy Dependence of the Underlying � Publications on the “underlying event” (2000-2015). Event in Proton-Antiproton Collisions, CDF Collaboration, submitted to Phys. Rev. D. The Underlying Event in Large (August 24, 2015)! Transverse Momentum Charged Jet and Z−boson Production at CDF, R. Field, published in the proceedings of DPF 2000. Charged Jet Evolution and the Underlying Event in Proton-Antiproton Collisions at 1.8 TeV, CDF Collaboration, Phys. Rev. D65 (2002) 092002. MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 97 Trieste, November 23, 2015

  83. Latest CDF UE Publication Latest CDF UE Publication Submitted to PRD CDF Run 2 Tevatron Energy Scan 300 GeV, 900 GeV, 1.96 TeV Sorry to be so slow!! Outgoing Parton The goal is to produce data (corrected to the PT(hard) particle level) that can be used by the theorists to Initial-State Radiation Proton AntiProton tune and improve the QCD Monte-Carlo models Underlying Event Underlying Event that are used to simulate hadron-hadron collisions. Final-State Radiation Outgoing Parton http://arxiv.org/abs/1508.05340 MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 98 Trieste, November 23, 2015

  84. “Tevatron Tevatron” ” to the LHC to the LHC “ My "TransAVE" Charged Particle Density: dN/d η η η η d φ φ φ φ dream! 1.5 RDF Preliminary 13 TeV Corrected Data Charged Particle Density CMS 1.0 7 TeV CDF 1.96 TeV CDF 0.5 900 GeV CDF 300 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η 0.0 0 5 10 15 20 25 30 PTmax (GeV/c) Mapping out the Energy Dependence of the UE (300 GeV, 900 GeV, 1.96 TeV, 7 TeV, 13 TeV) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 99 Trieste, November 23, 2015

  85. “Tevatron Tevatron” ” to the LHC to the LHC “ My Fake data generated "TransAVE" Charged Particle Density: dN/d η η η η d φ φ φ φ dream! by Rick using the 1.5 Monash tune with RDF Preliminary 13 TeV Corrected Data the statistics we currently have at CMS! Charged Particle Density CMS 1.0 7 TeV CDF 1.96 TeV CDF 0.5 900 GeV CDF 300 GeV Charged Particles (| η η |<0.8, PT>0.5 GeV/c) η η 0.0 0 5 10 15 20 25 30 PTmax (GeV/c) Mapping out the Energy Dependence of the UE (300 GeV, 900 GeV, 1.96 TeV, 7 TeV, 13 TeV) MPI@LHC ICTP Rick Field – Florida/CDF/CMS Page 100 Trieste, November 23, 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend