mott criticality studied by dilatometry under 4 he gas
play

Mott criticality studied by dilatometry under 4 He-gas pressure on - PowerPoint PPT Presentation

Mott criticality studied by dilatometry under 4 He-gas pressure on the quasi-2D organic charge-transfer salts -(BEDT-TTF) 2 X Rudra Sekhar Manna Augsburg University, Germany Goethe University Frankfurt, Germany -(ET) 2 X (P 0 ,T 0 ) param


  1. Mott criticality studied by dilatometry under 4 He-gas pressure on the quasi-2D organic charge-transfer salts κ -(BEDT-TTF) 2 X Rudra Sekhar Manna Augsburg University, Germany Goethe University Frankfurt, Germany κ -(ET) 2 X (P 0 ,T 0 ) param . ins. T MI metal T N ICTP-New-Delhi AFM supercon 12.02.2015 sc ins. ductor 40 20 60 P (MPa) 1 1 SFB/TR 49

  2. acknowledgement M. Lang L. Bartosch Goethe University Frankfurt, Germany E. Gati U. Tutsch Tohoku University, Japan T. Sasaki J. A. Schlueter Argonne National Laboratory, USA R. Kato RIKEN, Japan 2

  3. outline - organic charge-transfer salts - phase diagrams - spin-liquid: κ -(ET) 2 Cu 2 (CN) 3 - Mott criticality in κ -(ET) 2 X - valence-bond-solid: EtMe 3 P[Pd(dmit) 2 ] 2 - summary and outlook 3

  4. κ -(BEDT-TTF) 2 X: charge-transfer salts [(BEDT-TTF) 2 ] + X - Anion (insulating ) ET (conducting) Anion (insulating) t t ET (BEDT-TTF) t' • κ -phase: “effective dimer model”: 1 hole/ dimer ⇒ half-filled conduction band • W ~ U eff : correlated π electrons 4 4

  5. Mott criticality at the 2 nd -order end-point (P 0 , T 0 ) κ -(ET) 2 X (P 0 ,T 0 ) param . insulator T MI metal T N AFM superconductor superconductor insulator 20 40 60 P (MPa) U/W X = Cu[N(CN) 2 ]Cl Cu[N(CN) 2 ]Br κ -d8-Br CH 2 ⇒ CD 2 Lefebvre et al. , PRL 85 , 5420 (00) 5 5

  6. effect-of-frustration t t t' t ʹ″ ʹ″ /t κ -(ET) 2 Cu[N(CN) 2 ]Cl κ -(ET) 2 Cu 2 (CN) 3 ext. Hückel calc. Mori et al. , 0.72 Chem. Soc. Jpn. 72 , 179 (99) 1.06 Komatsu et al. , JPSJ 65 , 1340 (96) ab initio calc. Kandpal et al. , 0.44 ~ 0.8 PRL 103 , 067004 (09) Nakamura et al. , 6 JPSJ 78 , 083710 (09)

  7. spin-liquid - κ -(ET) 2 Cu 2 (CN) 3 T t t t' c Mott insulator b metal T c = 4.5 K spin liquid sc !? P 100 MPa X = Cu 2 (CN) 3 t ʹ″ /t ~ 0.8 no long-range magnetic order down to 32 mK ( J = 250 K) R. S. Manna et al. , PRL 104 , 016403 (10) Kitaev spin-liquid Kurosaki et al. , PRL 95 , 177001 (05) Shimizu et al. , PRL 91 , 107001 (03) A 2 IrO 3 (A = Na, Li) 7

  8. Mott universality (V 1-x Cr x ) 2 O 3 crossover: δ , β , γ = 3, 0.5, 1 (mean field values) δ , β , γ = 4.81, 0.34, 1 (3D Ising) ⇒ liquid-gas universality (3D Ising) Limelette et al ., Science 302 , 89 (03) DMFT of the Hubbard model: an order parameter for the finite temperature Mott end point ⇒ Ising universality class, similar to the liquid-vapor transition Castellani et al. , PRL 43 , 1957 (79) Kotliar et al. , PRL 84 , 5180 (00) 8 8

  9. controversy : κ -(ET) 2 Cu[N(CN) 2 ]Cl conductivity 13 C-NMR Δ 1/T 1 T ∝ | P-P c | 1/2 ⇒ δ = 2 unconventional δ , β , γ = 2, 1, 1 unconventional Mott criticality Kagawa et al. , Nature Physics 5 , 880 (09) Kagawa et al ., Nature 436 , 534 (05) conductivity data of κ -(ET) 2 Cu[N(CN) 2 ]Cl: coupling to the energy density dominates ⇒ consistent with 2D Ising universality class 9 9 Papanikolaou et al. , PRL 100 , 026408 (08)

  10. Mott criticality at the 2 nd -order end-point (P 0 , T 0 ) D8-Br κ -(ET) 2 X D8-Br (P 0 ,T 0 ) h D8-Br sample 1 param . α s insulator T MI metal T MI T * T N sample 2 AFM T g superconductor t insulator superconductor 40 20 60 P (MPa) assumption: Grüneisen scaling - breakdown of Grüneisen scaling in the vicinity an an C δ ∝ δα i of a finite-temp. critical end point D8-Br ∼ - consistent with 2D Ising universality class critical exponent α = (0.8 ± 0.15)?! CH 2 ⇒ CD 2 - large anomaly in alpha and sign change at the Souza et al. , PRL 99 , 037003 (07) critical end-point (P 0 , T 0 ) Souza et al. , PRL 99 , 037003 (07) Bartosch et al. , PRL 104 , 245701 (10) 10 10 Lefebvre et al. , PRL 85 , 5420 (00)

  11. thermal expansion measurements under He-gas pressure experimental specifications - high-resolution capacitive dilatometer (5 × 10 -2 Å) - temperature range 1.4 - 293 K - hydrostatic pressure range 0 - 250 MPa (helium as a pressure transmitting medium) - magnetic field range 0 - 14 T 11 11

  12. pressure cell and dilatometer 1 dilatometer cell 2 n-InSb pressure gauge ( Δ P = ± 0.1 MPa) ⇒ p = p 0 ≈ const. V p-cell ≈ 80 cm 3 3 seal 4 plug with electrical feed-throughs 5 retaining screw 22 mm Thermal expansion coefficient, 1 2 - constant-pressure condition 3 - 4 He (pressure-transmitting medium): gas/ liquid phase 4 V = 50.000 cm 3 - pressure reservoirs: gas bottle/ compressor with micropump 4 He P ≤ 300 bar 5 R. S. Manna, PhD thesis (12) 12 12 R. S. Manna et al. , Rev. Sci. Instrum. 83 , 085111 (12)

  13. Mott criticality at the 2 nd -order end-point (P 0 , T 0 ) κ -(ET) 2 X (P 0 ,T 0 ) param . insulator T MI metal T N AFM superconductor superconductor insulator 20 40 60 P (MPa) U/W X = Cu[N(CN) 2 ]Cl Cu[N(CN) 2 ]Br κ -d8-Br CH 2 ⇒ CD 2 Lefebvre et al. , PRL 85 , 5420 (00) 13 13

  14. κ -D8-Br at finite pressure p α s T * T * T MI T g T g Bartosch et al. , PRL 104 , 245701 (10) α T max T MI - T g pressure independent, cf. Müller et al. , PRB (02) - T MI (1 st -order) consistent with literature 14 14 - effect of pressure on T * (2 nd -order)

  15. κ -D8-Br at finite pressure after subtracting a T-linear background 1 β α sgn (h)( t) − + ∞ − scaling theory: sing and consistent with 2D Ising universality class 15 15

  16. Mott criticality at the 2 nd -order end-point (P 0 , T 0 ) κ -(ET) 2 X (P 0 ,T 0 ) param . insulator T MI metal T N AFM superconductor superconductor insulator 20 40 60 P (MPa) U/W X = Cu[N(CN) 2 ]Cl Cu[N(CN) 2 ]Br κ -d8-Br CH 2 ⇒ CD 2 Lefebvre et al. , PRL 85 , 5420 (00) 16 16

  17. κ -Cl at finite pressure Δ α max “ κ -Cl“ 0 background 17 17

  18. κ -Cl at finite pressure Δα max ∝ ( P – P c ) - κ Scaling theory: Bartosch et al. , PRL 104 , 245701 (10) 1 - β 0 for “unconventional criticality“ ( β = 1) ?! κ = = 7/15 for 2D Ising β + γ ( ) determination of κ requires precise knowledge of P c ! crossover from 2D Ising ( κ ≈ 0.5) to mean-field ( κ ≈ 0.3) criticality? 18 18 Zacharias et al. , PRL 109 , 176401 (12)

  19. summary • Thermal expansion measurements under 4 He-gas pressure have been performed on κ -(ET) 2 X for probing critical fluctuations. • data of κ -D8-Br and κ -Cl: - Mott critical end point is consistent with 2D Ising universality class. outlook • sample-to-sample variations • determination of P c ⇒ κ = (1 - β )/( β + γ ) • measurement in the insulating (low-P) regime ⇒ sign change in α ! • role of lattice degrees of freedom 19 19

  20. EtMe 3 X[Pd(dmit) 2 ] 2 (X = P/Sb) X = P uniform stacking (one type of [Pd(dmit) 2 ] layer) Tamura et al. , JPSJ 75 , 093701 (06) Itou et al. , Nat. Phys. 6 , 673 (10) K. Kanoda and R. Kato, Annu. Rev. Condens. Matter Phys. 2 , 167 (11) 20

  21. EtMe 3 X[Pd(dmit) 2 ] 2 – ground state properties X = Sb ⇒ spin-liquid X = P ⇒ valence-bond-solid J = 240 K J = 250 K J = 260 K similar to κ -(ET) 2 Cu 2 (CN) 3 Tamura et al. , JPSJ 75 , 093701 (06) Itou et al. , PRB 77 , 104413 (08) Shimizu et al. , PRL 99 , 256403 (07) 21

  22. b - strongly anisotropic lattice distortions accompanying the formation of VBS - weak in-plane α a vs α c anisotropy for T > T VBS suggests dominant contribution from EtMe 3 P cations 22 R. S. Manna et al. , PRB 89, 045113 (14)

  23. anomalous thermal expansion in the paramagnetic region Assumptions: α a = α lat a + α mag a α c = α lat c + α mag c α lat c = A α lat a α mag c = B α mag a α b α mag c – 1.15 α mag a anomalous contribution at T α max ≈ 40 K due to the short-range afm correlation, cf. T χ max = 70 K 23 χ -data: Tamura et al. , JPSJ 75 , 093701 (06) R. S. Manna et al. , PRB 89, 045113 (14)

  24. variation of T χ max / T α max = T χ max /T C max for low-D quantum magnets with different degree of frustration • for 2D triangular lattice S = ½ Heisenberg afm ~ 1 T χ max - for Cs 2 CuBr 4 : J'/J = 0.74 - for κ -(ET) 2 Cu 2 (CN) 3 : J'/J = 0.64 - 0.74 T α max Shimizu et al. , PRL 91 , 107001 (03) R. S. Manna et al. , PRL 104 , 016403 (10) κ -(ET) 2 Cu 2 (CN) 3 • for 1D uniform S = ½ Heisenberg chain ~ 1.34, T χ for alternating exchange variant ~ 3 and max including next-nearest-neighbor interactions ~ 3.6 T C Klümper, Eur. Phys. J. B 5 , 677 (98) max Bühler et al. , PRB 64 , 024428 (01) present case:T χ max / T α max ≈ 1.7 - 2.3 t' t ⇒ suggests a more anisotropic (quasi-1D) scenario t'' 24 R. S. Manna et al. , PRB 89, 045113 (14)

  25. lattice distortion at VBS transition R. S. Manna et al. , PRB 89, 045113 (14) - distinct and strongly anisotropic second-order phase transition into the low-T VBS phase at 25 K - upon cooling c -axis (in-plane) contracts, a -axis (in-plane) expands while the dominant effect is along the b -axis (out-of-plane) which expands ⇒ pressure dependency comes from the out-of-plane component as the in-plane pressure effects cancel each other out (- 4.2 K/100 MPa) 25

  26. summary • valence-bond-solid, EtMe 3 P[Pd(dmit) 2 ] 2 - An anomalous contribution at T α max ≈ 40 K is found and assigned to the short- range afm correlations. - T χ max / T α max ≈ 1.7 - 2.3 seems incompatible with quasi-2D triangular lattice (~ 1), rather compatible with a quasi-1D more anisotropic scenario. outlook • perform similar experiments for the spin-liquid (dmit-Sb) compound • study the Mott criticality in dmit-salts vs ET-based compounds ?! Thank you for your attention ! 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend