mordell weil group and massless matter in f theory
play

Mordell-Weil group and massless matter in F-theory arXiv: 1405.3656 - PowerPoint PPT Presentation

Mordell-Weil group and massless matter in F-theory arXiv: 1405.3656 with O. Till , C. Mayrhofer , D. Morrison arXiv: 1406.6071 with L. Lin arXiv: 1307.2902 with J. Borchmann , E. Palti and C. Mayrhofer arXiv: 1402.5144 with M. Bies , C.


  1. Mordell-Weil group and massless matter in F-theory • arXiv: 1405.3656 with O. Till , C. Mayrhofer , D. Morrison • arXiv: 1406.6071 with L. Lin arXiv: 1307.2902 with J. Borchmann , E. Palti and C. Mayrhofer • arXiv: 1402.5144 with M. Bies , C. Mayrhofer and C. Pehle Timo Weigand Institute for Theoretical Physics, Heidelberg University Strings 2014, Princeton, 06/25/2014 – p.1

  2. The beauty of F-theory F − theory Particle physics ← → Geometry Fruitful connections to particle physics via F-theory GUTs have motivated a lot of recent progress in understanding of 4-dimensional F-theory vacua Two examples of recent advances: 1) The geometry of elliptic fibrations with extra sections • determines the abelian sector of gauge theories • affects the structure of Yukawa selection rules • is responsible for absence of proton decay operators in F-theory GUTs 2) The C 3 -background • determines matter multiplicities • is a crucial input in 4-dimensional F-theory Strings 2014, Princeton, 06/25/2014 – p.2

  3. Outline I.) The Mordell-Weil group in F-theory II.) Non-torsional sections & applications: Standard Models in F-theory (’F-theory non-GUTs’) [Ling,TW’14] III.) Torsional sections [Mayrhofer,Morrison,Till,TW’14] IV.) Gauge data/ C 3 backgrounds and applications [Bies,Mayrhofer,Pehle,TW’14] Strings 2014, Princeton, 06/25/2014 – p.3

  4. Mordell-Weil group 1) Elliptic curve : E = C / Λ τ τ+1 ↔ addition of points b Rational points : a 1 • have Q -rational coordinates ( x, y, z ) in Weierstrass model y 2 = x 3 + fxz 4 + gz 6 , [ x : y : z ] ∈ P 2 2 , 3 , 1 • form an abelian group under addition = Mordell-Weil group E E = Z r ⊕ Z k 1 ⊕ · · · ⊕ Z k n 2) Elliptic fibration : π : Y → B elliptic fiber degenerate ell. fiber Rational section σ : B ∋ b �→ σ ( b ) = [ x ( b ) : y ( b ) : z ( b )] CY four− fold Y base three− • σ ( b ) is a K -rational point in fiber brane S fold B • degenerations in codimension allowed Strings 2014, Princeton, 06/25/2014 – p.4

  5. Mordell-Weil group Mordell-Weil group E ( K ) = group of rational sections • zero-element = zero-section σ 0 : b → [1 : 1 : 0] in y 2 = x 3 + fxz 4 + gz 6 • group law = fiberwise addition Z r ⊕ Z k 1 ⊕ · · · ⊕ Z k n E ( K ) = ���� � �� � free part torsion part Physical significance: • Free part ↔ U (1) gauge symmetries [Morrison,Vafa’96],[Klemm,Mayr,Vafa’98],.. . • Torsion part ↔ Global structure of non-ab. gauge groups ( π 1 ( G ) ) [Aspinwall,Morrison’98], [Aspinwall,Katz,Morrison’00], . . . , [Mayrhofer,Till,Morrison,TW’14] Systematic recent study of U(1)s via rational sections: � extra selection rules, e.g. crucial in F-theory GUTs � window to gauge fluxes and chirality � general interest in any theory with massless U(1)s (landscape studies, . . . ) Antoniadis,Anderson,Bizet,Borchmann,Braun,Braun,Choi,Collinucci,Cvetiˇ c,Etxebarria,Grassi,Grimm, Hayashi, Keitel,Klevers,K¨ untzler,Krippendorf,Oehlmann,Klemm,Leontaris,Lopes,Mayrhofer, Mayorga, Morrison, Park,Palti,Piragua,R¨ uhle,S-Nameki,Song,Valandro,Taylor,TW,.. . Strings 2014, Princeton, 06/25/2014 – p.5

  6. Mordell-Weil group Divisors on elliptic 4-fold ˆ Y 4 → B : • zero-section Z • pullback from base π − 1 ( D b ) • resolution divisors F m , m = 1 , . . . , rk( G ) • rational sections S i Shioda map → NS ( ˆ • homomorphism ϕ : Y 4 ) ⊗ Q E ( K ) [Shioda’89] � �� � � �� � group of sections group of divisors ϕ ( S − Z ) = S − Z − π − 1 ( δ ) + � l i F i , l i ∈ Q • transversality Y 4 [ ϕ ( S − Z )] ∧ [ X ] ∧ [ π − 1 ω 4 ] = 0 X ∈ { Z, F l , π − 1 ( D b ) } � ˆ Strings 2014, Princeton, 06/25/2014 – p.6

  7. Non-torsional sections • [ S ] ≡ [ ϕ ( S − Z )] is non-trivial in H 1 , 1 ( ˆ Y 4 ) • [ S ] serves as the generator of U (1) gauge group C 3 = A ∧ [ S ] A : U (1) gauge potential Engineering extra sections via restriction of complex structure of fibration • Non-generic Weierstrass models, simplest example: [Grimm,TW’10] y 2 − a 1 x y z − a 3 y z 3 = x 3 + a 2 x 2 z 2 + a 4 x z 4 + ✟✟ ✟ a 6 z 6 , [ x : y : z ] ∈ P 2 , 3 , 1 zero-section: [1 : 1 : 0] extra section: [0 : 0 : 1] Generalisations in [Mayrhofer,Palti,TW’12] • Systematic approach via different fiber representations � cf. talk by D. Klevers • rank 1: P 1 , 1 , 2 [4] [Morrison,Park’12] • rank 2: P 2 [3] [Borchmann,Mayrhofer,Palti,TW][Cvetiˇ c,(Grassi),Klevers,Piragua]’13 • rank 3: complete intersections [Cvetiˇ c,Klevers,Piragua,Song’13] • toric hypersurfaces [Braun,Grimm,Keitel’13][Grassi,Perduca’12] Strings 2014, Princeton, 06/25/2014 – p.7

  8. Standard Model applications Explore U(1) selection rules in F-theory Standard Models [Ling,TW’14] SU (3) × SU (2) × U (1) 1 × U (1) 2 ↔ U (1) Y = a U (1) 1 + b U (1) 2 • U (1) 1 × U (1) 2 [Borchmann,Mayrhofer,Palti,TW][Cvetiˇ c,(Grassi),Klevers,Piragua]’13 v w ( c 1 w s 1 + c 2 v s 0 ) + u ( b 0 v 2 s 02 + b 1 v w s 0 s 1 + b 2 w 2 s 12 ) + 0 = +u 2 ( d 0 v s 02 s 1 + d 1 w s 0 s 12 + d 2 u s 02 s 12 ) • SU (2) ↔ W 2 = { w 2 = 0 } SU (3) ↔ W 3 = { w 3 = 0 } g m = g m,k,l w k 2 w l g m ∈ { b i , c j , d k } , 3 × 3 ’toric enhancements’ 3 • fully resolved fibrations over suitable base B Types of matter representations: 5 × ( 3 , 1 ) ↔ ( u c R , e c ( 3 , 2 ) ↔ Q L 3 × ( 1 , 2 ) ↔ ( H u , H d , L ) R ) 6 × ( 1 , 1 ) ↔ ν c R or extra singlet extensions Rich pattern of Yukawa couplings ↔ MSSM + extra dim-4 and dim-5 couplings Strings 2014, Princeton, 06/25/2014 – p.8

  9. Standard Model identifications [Ling,TW’14] Matter spectrum Baryon- and Lepton number violation α : ( 2 I 1 , 3 A 3 ) , ( 2 I 2 , 3 A 2 ) , ( 2 I 3 , 3 A 5 ) ; β : 3 A 4 3 A 3 3 A 2 , possibility no. 5 3 A 4 3 A 5 3 A 5 , 3 A 1 3 A 3 3 A 5 ; δ : 1 (5) 1 (6) 1 (6) , 1 (5) 1 (6) 1 (6) ; 2 , 2 I a = 1 , b = 0; ( H u , H d ) = ( 2 I 1 ) γ : 2 I 1 2 I 2 1 (2) , 2 I 1 2 I 3 1 (1) , 2 I 2 2 I 2 1 (3) , 2 I 2 2 I 3 1 (4) , R ) : ( 3 A 4 , 3 A heavy ( u c R , d c 3 ) 2 I 3 2 I 3 1 (2) ; λ 1 : 2 I 1 ; λ 3 : � ; λ 6 : − ; λ 8 : 1 (2) ; λ 10 : ( 3 A 3 ) ∗ ; R : 3 A R : 3 A 2 , 3 A light u c 1 ; light d c 5 λ 4 : ( 3 A 4 , 1 (2)) , ( 3 A 1 , 1 (1)) ; λ 5 : ( 2 I 2 , 2 I 2) ; λ 9 : ( 3 A 4 , ( 2 I 2) ∗ ) , ( 3 A 1 , ( 2 I 3) ∗ ) ; heavy generations of ( L, ν c R , e c R ) : λ 7 : 3 A 4 ( 3 A 3 ) ∗ 1 (2) , 3 A 4 ( 3 A 2 ) ∗ 1 (3) , ( 2 I 1 , 1 (5) , − ) , ( 2 I 2 , − , 1 (2) ) , ( 2 I 3 , 1 (6) , 1 (1) ) 3 A 4 ( 3 A 5 ) ∗ 1 (4) , 3 A 1 ( 3 A 3 ) ∗ 1 (1) , 3 A 1 ( 3 A 2 ) ∗ 1 (4) , 3 A 1 ( 3 A 5 ) ∗ 1 (2) ; R : 1 (5) , 1 (6) ; light e c R : 1 (3) , 1 (4) light ν c λ 2 : 3 A 4 3 A 4 3 A 3 1 (3) , 3 A 4 3 A 4 3 A 2 1 (2) , 3 A 4 3 A 4 3 A 5 1 (4) , 3 A 4 3 A 1 3 A 3 1 (4) , 3 A 4 3 A 1 3 A 2 1 (1) , 1 µ : 1 (5) 3 A 4 3 A 1 3 A 5 1 (2) , 3 A 1 3 A 1 3 A 3 1 (2) , 3 A 1 3 A 1 3 A 5 1 (1) Red choice: no dim-4 ✘✘✘ ✘ R-parity, no Q Q Q L , u c R u c R d c R e c R Next steps include: • Analysis of chiral spectrum via gauge fluxes (see later) • Analyse distinctive non-pert. features Strings 2014, Princeton, 06/25/2014 – p.9

  10. Torsional sections [Mayrhofer,Morrison,Till,TW’14] • If R is Z k -torsional section: k ( R − Z ) = 0 • Shioda map is homomorphism: 0 = ϕ ( k ( R − Z )) = kϕ ( R − Z ) ∈ NS ( ˆ Y 4 ) ⊗ Q • Since NS ( ˆ a i Y 4 ) ⊗ Q is torsion free: ϕ ( R − Z ) = R − Z − π − 1 ( δ ) + � k F i is trivial i � Ξ k ≡ R − Z − π − 1 ( δ ) = − 1 i a i F i , a i ∈ Z is integer divisor k Relation to group theory: • Lie algebra g ↔ coroot lattice Q ∨ = � F i � Z F i : resol. divisors ↔ codim.-1 • Representation content ↔ weight lattice Λ ↔ codimension-2 fibers • Integer pairing Λ ∨ × Λ → Z gives weights coweight lattice Λ ∨ ⊇ Q ∨ • If Λ ∨ = Q ∨ = � F i � Z → gauge group G 0 : π 1 ( G 0 ) ≈ Λ ∨ Q ∨ = ∅ • Integer Ξ k = − 1 i a i F i → ’k-fractional refinement’ of Λ ∨ � k • dual weight lattice becomes coarser → smaller representation content gauge group G = G 0 / Z k with π 1 ( G ) = Z k Strings 2014, Princeton, 06/25/2014 – p.10

  11. Fibrations with MW torsion Hypersurface fibrations with MW torsion • Z k for k = 2 , 3 , 4 , 5 , 6 , Z 2 ⊕ Z n with n = 2 , 4 and Z 3 ⊕ Z 3 [Morrison,Aspinwall’98] • Toric models: Z 2 , Z 3 , Z ⊕ Z 2 [Braun,Grimm,Keitel’13] • Previous analysis from perspective of SL (2 , Z ) -monodromies: [Berglund,Klemm,Mayr,Theisen’98] • Exemplification of general structure for toric models [Mayrhofer,Morrison,Till,TW’14] General pattern • Codimension-one fibers: Z k -torsion automatically produces non-ab. gauge group factor G 0 / Z k • Codimension-two fibers: matter spectrum greatly restricted due to reduced center of G • Codimension-three fibers: no further selection rules at the level of Yukawa couplings Strings 2014, Princeton, 06/25/2014 – p.11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend