molecular simulation of aqueous and non aqueous
play

Molecular simulation of aqueous and non-aqueous electrolyte - PowerPoint PPT Presentation

Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse AIChE Annual Meeting, San Francisco, 4 th November 13 Molecular simulation of aqueous and non-aqueous electrolyte solutions M. T. Horsch, 1 S. Reiser, 1 S. Deublein, 1 J. Vrabec,


  1. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse AIChE Annual Meeting, San Francisco, 4 th November 13 Molecular simulation of aqueous and non-aqueous electrolyte solutions M. T. Horsch, 1 S. Reiser, 1 S. Deublein, 1 J. Vrabec, 2 and H. Hasse 1 1 Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Germany 2 Thermodynamics and Energy Technology, University of Paderborn, Germany

  2. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Electrolyte Solutions – Applications Buffer solutions in pharmaceutical and biochemical industry / purification of proteins Electrochemistry / energy storages 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 2

  3. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Simulation of aqueous electrolyte solution Molecular models: Ions Water - 1 CLJ 1 CLJ - + + 1 point charge 3 partial charges Literature models: Parameters Na + : < σ Na+ / Å < 4.1 • Scattering of model parameters 1.9 0.06 < ε Na+ / K < 1068.8 Reference property: • Density ρ Large deviation from experiments 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 3

  4. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Parameter optimization for alkali halides Adjustable parameters: • Ions: 1 CLJ with 1 point charge (±1e) – 2 parameters Target: • Reduced density for varying salinity at T = 293 K, p = 1 bar ρ ρ = Electrolyte solution = ρ σ σ ε ε   ( , , , , x ) + − + − ± ρ Solvent - Simulation conditions: • Monte Carlo simulation σ Ion , ε Ion • SPC/E water model • Simulation code: extended version of ms 2* *Deublein et al., Computer Physics Communications (2011), 182, 2350 – 2367; http://www.ms-2.de 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 4

  5. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Target: Slope of the reduced density over the salt mass fraction Reduced density of NaCl solutions ( T = 298 K, p = 1 bar) ρ  Sim Sensitivity study of : ε = 0.25 ε Cl • σ Ion dominant • ε Ion negligible ε = 4 ε Cl ρ = ρ σ σ  Sim  Sim ( , , x ) m ± + - Adjustment: ρ ρ  Sim  Sim d d = = σ σ m ( , ) + - (m) (m) d x d x 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 5

  6. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Parameter optimization for alkali halides Electrolyte systems : Li + , Na + , K + , Rb + , Cs + 20 salts modeled by 5 cations: F - , Cl - , Br - , I - 9 parameter 4 anions: Size adjustment: • Global fit σ + [1.5; 4.5] Å σ - [2.0; 4.5] Å ! ρ ρ  Exp  Sim d d = σ σ ( , ) + - (m) (m) d x d x 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 6

  7. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Aqueous electrolyte solutions Reduced density ( T = 293 K, p = 1 bar) σ Li = 1.88 Å σ Na = 1.89 Å σ K = 2.77 Å Anions σ F = 3.66 Å σ Cl = 4.41 Å σ Br = 4.54 Å σ Rb = 3.26 Å σ Cs = 3.58 Å σ I = 4.78 Å 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 7

  8. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Self-diffusion coefficient of ions in aqueous solution (Example bromide) Adjustment of the LJ energy parameters ε Ion to the self- diffusion coefficient in solution ( T = 298 K, p = 1 bar) • Reasonable parameter range: 200 K ≤ ε Br- ≤ 400 K • Similar dependence of D i on ε i for all alkali and halide ions Water model: SPC/E 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 8

  9. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Radial distribution function of water around the ions (Example bromide) Adjustment of the LJ energy parameters ε Ion to the first maximum r max,1 in the RDF ( T = 293 K, p = 1 bar) • Reasonable match: ε Br- = 200 K • Best choice: ε + = ε - = 200 K Water model: SPC/E 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 9

  10. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Self-diffusion coefficient of alkali cations and halide anions in aqueous solution Comparison with experimental data ( T = 298 K, p = 1 bar) Cations Anions Water model: SPC/E 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 10

  11. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Electric conductivity of NaCl and CsCl in aqueous solutions at various salinities Predictions ( T = 298 K, p = 1 bar) Electric conductivity: • Correlated motion of the ions in solution Water model: SPC/E 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 11

  12. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Temperature dependence of the density Predictions for aqueous solution ( T = 333 K, p = 1 bar) • Experimental data (this work) • Simulation 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 12

  13. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Simulation of non-aqueous electrolyte solutions: solvent methanol Molecular models: Methanol Ions - 2 CLJ 1 CLJ - + + 3 partial charges 1 point charge Reference property: ρ ρ = Electrolyt solution  • Reduced density ρ Solvent Simulation: • MC simulations at T = 298 K, p = 1 bar 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 13

  14. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Methanolic electrolyte solutions Predictions ( T = 298 K, p = 1 bar) • Experimental data (this work) • Simulation 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 14

  15. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Radial distribution function of methanol Diluted methanolic NaCl solution ( T = 298 K, p = 1 bar) Na + r 1. Max / Å r 1. Min / Å Methanol Water Methanol Water Na – O 2.21 2.23 3.17 3.07 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 15

  16. Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse Summary  New atomistic force fields for ions  Alkali-cations: Li + , Na + , K + , Rb + , Cs +  Halide-anions: F - , Cl - , Br - , I -  Model adjustment in aqueous systems  Reduced density  Self-diffusion coefficient and RDF  Predictions  Electric conductivity  Temperature dependence of the reduced density  Reduced density of methanolic solutions 4 th November 13 Martin Horsch, Steffen Reiser, Stephan Deublein, Jadran Vrabec, and Hans Hasse 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend