molecular dynamics of dna origami
play

Molecular Dynamics of DNA Origami Aleksei Aksimentiev, Physics - PowerPoint PPT Presentation

Molecular Dynamics of DNA Origami Aleksei Aksimentiev, Physics University of Illinois at Urbana-Champaign DNA origami Scaffold: long ssDNA Staple: short (17~50 bp) ssDNA, connecting different parts. Video credit: Shawn Douglas Han, Dongran


  1. Molecular Dynamics of DNA Origami Aleksei Aksimentiev, Physics University of Illinois at Urbana-Champaign

  2. DNA origami Scaffold: long ssDNA Staple: short (17~50 bp) ssDNA, connecting different parts. Video credit: Shawn Douglas Han, Dongran et al ., Science , 2011, 332 (6027), 342-346. Marras, Alexander E. et al ., Proc. Natl. Acad. Sci. USA, 2015, 112 (3) 713-718 2 Gerling, Thomas et al ., Science , 2015, 347 (6229), 1446-1452.

  3. Design ¡and ¡ ¡characterization ¡of ¡DNA ¡ nanostructures Computer-aided design of DNA origami a b y = = with caDNAno (Shih group, Harvard U.) x z a b c i ii iii i ii caDNAno i ii iii i ii c d i ii iii Transmission electron microscopy and/or atomic force microscopy Cryo-EM validates the design reconstruction, the only experimentally derived structural model

  4. All-atom molecular dynamics simulations of DNA nanostructures Atoms move according to ¡ Massive parallel computer classical mechanics (F= ma) Blue Waters (UIUC): ~200,000 CPUs Time scale: ~ 0.1-100 µ s Interaction between atoms is ¡ Length scale: 10K - 100M ¡ atoms or (< 50 nm) 3 defined by molecular force field Time resolution: 2 fs ACS Nano 9:1420-1433 (2015) Spacial resolution: 0.1 A

  5. From caDNAno to all-atom C A B i ii iii i ii iii i ii iii i crossover plane i Jejoong ¡Yoo ¡ 1 3 5 1 2 4 6 2 3 5 4 6 1211 11 9 7 9 8 7 10 10 8 12 x 13 1415 17 13 15 17 16 x 18 z 18 ii iii 14 16 ii iii i y ⊗ i y crossover plane ii crossover plane iii D E x z D y • caDNAno returns topology (json) and ✴ CHARMM36 force field sequence (csv) information. ✴ Explicit water ✴ [MgCl 2 ] ~ 10 mM ✴ NAMD ✴ 1 to 3M atoms • cadnano2pdb.pl combines json and ✴ 500 to 1,000 CPUs csv files into a PDB file. 5

  6. All-atom MD simulation of L-shape DNA origami Experiment Dietz, H. et al, Science , 325 120 s = L 110 27 End-end angle (°) 26 3 5 100 1 ˆ t 3 25 6 2 4 ˆ 90 24 t 2 23 11 9 ˆ 80 t 1 7 22 12 70 10 8 21 15 17 60 13 20 0 5 10 15 20 25 30 Time (ns) 19 ˆ 14 16 18 t 3 10 Programmed bend 18 Bend per 7-bp array cell (°) Programmed 8 17 s = 0 16 6 ˆ t 3 15 4 14 bend 13 12 2 11 10 9 5 4 3 1 8 7 6 2 0 0 4 8 12 16 20 24 Array cell index

  7. Structural dynamics

  8. Structural fluctuations reveal local mechanical properties MD trajectories allow us to compute 80 l p pers natural bending and torsion as well as 30 60 DNA-DNA distance (Å) persistence length 28 26 µm 40 24 - Inter-DNA distance in color map 22 - Chicken wire frame represents center line of helices & 20 20 junction 18 0 HC0 SQ0 Persistence length of DNA origami Our simulations predict higher rigidity for honeycomb-lattice design. Yoo ¡and ¡AA, ¡ PNAS ¡110:20099 ¡(2013)

  9. MD simulation of DNA origami conductivity caDNAno 5 nA 150 ms all-atom PDMS 9

  10. MD simulation of DNA origami conductivity 5 nA DNA 150 ms Mg(H 2 O) 62+ H 2 O K + Cl - Electric field PDMS Li, Chen-Yu et al. ACS Nano 9:1420-1433 (2015) 10

  11. MD simulation of DNA origami conductivity 5 nA 150 ms Instantaneous current: PDMS 11

  12. Factors affecting ionic conductivity of DNA origami Number of DNA layers: Lattice type: SQ2 has lower projected DNA density and a higher leakage More layer -> less leakage current current 500mV 500mV Nonlinear because of the edge effect 12

  13. Higher [Mg 2+ ] makes DNA origami Effect of Mg 2+ less conductive. a) 1 M KCl, 0.5x TBE 2 1 100 mM MgCl 2 Elisa A. Hemmig - SQ2, m13 a) 1 M KCl, 0.5x TBE sequence 1 2 100 mM MgCl 2 30 ms 1 nA - Silvia Hernández-Ainsa 30 ms [Mg 2+ ] 1 nA + + ~2 times less V=500 mV conductive than Ulrich F. 5.5 mM MgCl2 [Mg 2+ ] 25 mM MgCl2 50 mM MgCl2 Keyser + 0 M [Mg 2+ ] + V=500 mV 5.5 mM 25 mM 50 mM 100 mM 1 nA a) 1 M KCl, 0.5x TBE 30 ms 1 2 5.5 mM MgCl2 25 mM MgCl2 50 mM MgCl2 100 mM MgCl 2 3 nA 1 nA - b) 30 ms 90 ms 30 ms 1 nA b) Higher [Mg 2+ ], higher current drop. 13 + + V=500 mV 5.5 mM MgCl2 25 mM MgCl2 50 mM MgCl2 1 nA 30 ms b) c) c) c)

  14. Mg 2+ makes DNA origami more compact, by screening the DNA- Mechanism of Mg 2+ DNA repulsion. 0 mM 131 mM 250 mM FRET: Elisa A. Silvia Ulrich F. Hemmig Hernández-Ainsa Keyser Cy3 (0,0) Cy5 (2,0) pendicular c Mean 58 54 53 (nm 2 ) area Higher [Mg 2+ ], lower inter-DNA distance h f 0.4 FRET efficiency 105.5 mM 205.5 mM 105.5 mM 205.5 mM 0.3 55.5 mM 55.5 mM 5.5 mM 5.5 mM 0.2 [MgCl 2 ] 14 i e

  15. Anisotropic conductivity Ulrich F. Jinglin Kong Keyser b AFM E x E y X σ σ o,x o,y Y Li, Chen-Yu et al. ACS Nano 9:1420-1433 (2015) 15

  16. Programmable ionic conductivity of DNA origami Structural design Ionic environment Number of DNA layers Direction MD has Lattice type Electro- Leak-proof Electric Z predicting mechanical plates field gates a) a) 1 M KCl, 0.5x TBE 1 M KCl, 0.5x TBE power! X 1 1 2 2 100 mM MgCl 2 100 mM MgCl 2 Nucleotide content Y - - Magnitude 30 ms 30 ms - - 1 nA 1 nA A A + + + + V=500 mV V=500 mV 5.5 mM MgCl2 5.5 mM MgCl2 25 mM MgCl2 25 mM MgCl2 50 mM MgCl2 50 mM MgCl2 16 1 nA 1 nA 30 ms 30 ms b) b) c) c)

  17. Cryo-EM reconstruction versus all-atom simulation Bai et al , PNAS 109:20012 (2012)

  18. Cryo-EM reconstruction versus all-atom simulation Bai et al , PNAS 109:20012 (2012)

  19. Cryo-EM reconstruction versus all-atom simulation Bai et al , PNAS 109:20012 (2012)

  20. MD simulation of the cryo-EM object starting from a caDNAno design 7M atom solvated model Bai et al , PNAS 109:20012 (2012) 130 ns MD trajectory

  21. MD simulation of the cryo-EM object starting from a caDNAno design 7M atom solvated model Bai et al , PNAS 109:20012 (2012) 130 ns MD trajectory

  22. MD simulation of the cryo-EM object starting from a caDNAno design Bai et al , PNAS 109:20012 (2012) 7M atom solvated model 130 ns MD trajectory

  23. Preliminary analysis indicates excellent agreement between the two methods Cryo-EM reconstruction All-atom MD simulation

  24. Ongoing projects \ Ion ¡channels Locking ¡ ¡ nanocontainers DNA ¡bricks 24

  25. Acknowledgement Collaborator (Keyser’s group) Chen Yu Li Dr. Ulrich F. Keyser Dr. Silvia Hernández-Ainsa Dr. Jejoong Yoo Elisa A. Hemmig Jinglin Kong Dr. Chris Maffeo 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend