modified serre green naghdi equations with improved or
play

Modified SerreGreenNaghdi equations with improved or without - PowerPoint PPT Presentation

Modified SerreGreenNaghdi equations with improved or without dispersion D IDIER CLAMOND Universit e C ote dAzur Laboratoire J. A. Dieudonn e Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com D IDIER C LAMOND


  1. Modified Serre–Green–Naghdi equations with improved or without dispersion D IDIER CLAMOND Universit´ e Cˆ ote d’Azur Laboratoire J. A. Dieudonn´ e Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 1 / 40

  2. Collaborators Denys Dutykh LAMA, University of Chamb´ ery, France. Dimitrios Mitsotakis Victoria University of Wellington, New Zealand. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 2 / 40

  3. Plan Models for water waves in shallow water Part I. Dispersion-improved model: Improved Serre–Green–Naghdi equations. Part II. Dispersionless model: Regularised Saint-Venant–Airy equations. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 3 / 40

  4. Motivation Understanding water waves (in shallow water). Analytical approximations: • Qualitative description; • Physical insights. Simplified equations: • Easier numerical resolution; • Faster schemes. Goal: • Derivation of the most accurate simplest models. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 4 / 40

  5. Hypothesis Physical assumptions: • Fluid is ideal, homogeneous & incompressible; • Flow is irrotational, i.e., � V = grad φ ; • Free surface is a graph; • Atmospheric pressure is constant. Surface tension could also be included. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 5 / 40

  6. Notations for 2D surface waves over a flat bottom • x : Horizontal coordinate. • y : Upward vertical coordinate. • t : Time. • u : Horizontal velocity. • v : Vertical velocity. • φ : Velocity potential. • y = η ( x , t ) : Equation of the free surface. • y = − d : Equation of the seabed. • Over tildes : Quantities at the surface, e.g., ˜ u = u ( y = η ) . • Over check : Quantities at the surface, e.g., ˇ u = u ( y = − d ) . • Over bar : Quantities averaged over the depth, e.g., � η u = 1 ¯ u d y , h = η + d . h − d D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 6 / 40

  7. Mathematical formulation • Continuity and irrotationality equations for − d � y � η u x = − v y , v x = u y ⇒ φ xx + φ yy = 0 • Bottom’s impermeability condition at y = − d ˇ v = 0 • Free surface’s impermeability condition at y = η ( x , t ) η t + ˜ u η x = ˜ v • Dynamic free surface condition at y = η ( x , t ) u 2 + v 2 + g η = 0 1 1 φ t + 2 ˜ 2 ˜ D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 7 / 40

  8. Shallow water scaling Assumptions for large long waves in shallow water: depth � 1 σ ∝ ( shallowness parameter ) , � wavelength ε ∝ amplitude � σ 0 � = O ( steepness parameter ) . depth Scale of derivatives and dependent variables: � σ 1 � � σ 0 � { ∂ x ; ∂ t } = O , ∂ y = O , � σ 0 � � σ − 1 � { u ; v ; η } = O , φ = O . D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 8 / 40

  9. Solution of the Laplace equation and bottom impermeability Taylor expansion around the bottom (Lagrange 1791): u = cos[ ( y + d ) ∂ x ] ˇ u 2 ( y + d ) 2 ˇ 6 ( y + d ) 4 ˇ 1 1 = ˇ u − u xx + u xxxx + · · · . Low-order approximations for long waves: � σ 2 � u = ¯ u + O , ( horizontal velocity ) � σ 3 � v = − ( y + d ) ¯ u x + O , ( vertical velocity ) . D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 9 / 40

  10. Energies Kinetic energy: � η u 2 + v 2 + h 3 ¯ u 2 u 2 d y = h ¯ � σ 4 � x K = + O , 2 2 6 − d Potential energy: � η g ( y + d ) d y = g h 2 V = 2 . − d Lagrangian density (Hamilton principle): L = K − V + { h t + [ h ¯ u ] x } φ D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 10 / 40

  11. Approximate Lagrangian u 2 − 2 gh 2 + { h t + [ h ¯ 1 1 u ] x } φ + O ( σ 2 ) . L 2 = 2 h ¯ ⇒ Saint-Venant (non-dispersive) equations. 6 h 3 ¯ 1 u 2 x + O ( σ 4 ) . L 4 = L 2 + ⇒ Serre (dispersive) equations. 90 h 5 ¯ 1 u 2 xx + O ( σ 6 ) . L 6 = L 4 − ⇒ Extended Serre (ill-posed) equations. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 11 / 40

  12. Serre equations derived from L 4 Euler–Lagrange equations yield: 0 = h t + ∂ x [ h ¯ u ] , � � 3 h − 1 ( h 3 ¯ u − 1 0 = ∂ t ¯ u x ) x � 1 u 2 + g h − 1 2 h 2 ¯ � u 2 u h − 1 ( h 3 ¯ x − 1 + ∂ x 2 ¯ 3 ¯ u x ) x . Secondary equations: 3 h − 1 ∂ x � h 2 γ � 1 ¯ u t + ¯ u ¯ u x + g h x + = 0 , � u 2 + 1 2 g h 2 + 1 3 h 2 γ � ∂ t [ h ¯ u ] + ∂ x h ¯ = 0 , � 1 u 2 + 1 2 g h 2 � 6 h 3 ¯ u 2 x + 1 ∂ t 2 h ¯ + � u 2 + 1 6 h 2 ¯ � u 2 ( 1 x + g h + 1 ∂ x 2 ¯ 3 h γ ) h ¯ = 0 , u with � � u 2 γ = h ¯ x − ¯ u xt − ¯ u ¯ . u xx D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 12 / 40

  13. 2D Serre’s equations on flat bottom (summary) Easy derivations via a variational principle. Non-canonical Hamiltonian structure. (Li, J. Nonlinear Math. Phys., 2002) Multi-symplectic structure. (Chhay, Dutykh & Clamond, J. Phys. A, 2016) Fully nonlinear, weakly dispersive. (Wu, Adv. App. Mech. 37, 2001) Can the dispersion be improved? D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 13 / 40

  14. Modified vertical acceleration u 2 u x ] + O ( σ 4 ) . γ = 2 h ¯ x − h ∂ x [ ¯ u t + ¯ u ¯ Horizontal momentum: 3 h − 1 ∂ x � h 2 γ � 1 + O ( σ 5 ) . ¯ u t + ¯ u ¯ u x = − g h x − � �� � � �� � � �� � O ( σ ) O ( σ ) O ( σ 3 ) Alternative vertical acceleration at the free surface: u 2 x + g h h xx + O ( σ 4 ) . γ = 2 h ¯ Generalised vertical acceleration at the free surface: u 2 u x ] + O ( σ 4 ) . γ = 2 h ¯ x + β g h h xx + ( β − 1 ) h ∂ x [ ¯ u t + ¯ u ¯ β : free parameter. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 14 / 40

  15. Modified Lagrangian u 2 Substitute h ¯ x = γ + h (¯ u xt + ¯ u ¯ u xx ) : + h 2 γ u 2 + h 3 u x ] x − g h 2 L 4 = h ¯ 12 [ ¯ u t + ¯ u ¯ + { h t + [ h ¯ u ] x } φ. 2 12 2 Substitution of the generalised acceleration: � σ 4 � u 2 γ = 2 h ¯ x + β g h h xx + ( β − 1 ) h ∂ x [ ¯ u t + ¯ u ¯ u x ] + O . Resulting Lagrangian: 4 = L 4 + β h 3 � σ 4 � L ′ 12 [ ¯ u t + ¯ u ¯ u x + g h x ] x + O . � �� � O ( σ 4 ) D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 15 / 40

  16. Reduced modified Lagrangian After integrations by parts and neglecting boundary terms: + ( 2 + 3 β ) h 3 ¯ − β g h 2 h 2 u 2 u 2 − g h 2 = h ¯ L ′′ x x 4 2 12 2 4 + { h t + [ h ¯ u ] x } φ = L ′ 4 + boundary terms . D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 16 / 40

  17. Equations of motion h t + ∂ x [ h ¯ u ] = 0 , � 1 � u 2 + gh − � � uq − 1 2 + 3 h 2 ¯ u 2 x − 1 2 β g ( h 2 h xx + hh 2 q t + ∂ x ¯ 2 ¯ 4 β x ) = 0 , � � u x + gh x + 1 3 h − 1 ∂ x h 2 Γ ¯ u t + ¯ u ¯ = 0 , � u 2 + 1 2 gh 2 + 1 � 3 h 2 Γ ∂ t [ h ¯ u ] + ∂ x h ¯ = 0 , � 1 u 2 + ( 1 2 gh 2 + 1 � 6 + 1 4 β ) h 3 ¯ u 2 x + 1 4 β gh 2 h 2 ∂ t 2 h ¯ + x �� 1 u 2 + ( 1 � � 6 + 1 4 β ) h 2 ¯ u 2 x + gh + 1 4 β ghh 2 x + 1 u + 1 2 β gh 3 h x ¯ ∂ x 2 ¯ 3 h Γ h ¯ u x = 0 , where � 1 � h − 1 � � 3 + 1 h 3 ¯ q = φ x = ¯ u − 2 β u x x , � � � � � � 1 + 3 u 2 − 3 hh xx + 1 2 h 2 Γ = 2 β ¯ x − ¯ u xt − ¯ u ¯ 2 β g . h u xx x D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 17 / 40

  18. Linearised equations With h = d + η , η and ¯ u small, the equations become η t + d ¯ u x = 0 , � 1 � d 2 ¯ 2 β g d 2 η xxx = 0 . 3 + 1 1 ¯ u t − 2 β u xxt + g η x − Dispersion relation: � ( kd ) 4 � 1 c 2 2 + β ( kd ) 2 3 + β ) ( kd ) 2 ≈ 1 − ( kd ) 2 3 + β g d = + . 2 + ( 2 3 2 3 Exact linear dispersion relation: c 2 ≈ 1 − ( kd ) 2 + 2 ( kd ) 4 g d = tanh( kd ) . kd 3 15 β = 2 / 15 is the best choice. D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 18 / 40

  19. Steady solitary waves Equation: ( F − 1 ) ( η/ d ) 2 − ( η/ d ) 3 � d η � 2 = 2 β ( 1 + η/ d ) 3 , � 1 � 3 + 1 F − 1 d x 2 β F = c 2 / g d . Solution in parametric form: � κ ξ � η ( ξ ) 6 ( F − 1 ) ( κ d ) 2 = = ( F − 1 ) sech 2 , ( 2 + 3 β ) F − 3 β . d 2 � ξ � � 1 / 2 ( β + 2 / 3 ) F − β h 3 ( ξ ′ ) / d 3 � � d ξ ′ , x ( ξ ) = � � ( β + 2 / 3 ) F − β � � 0 D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 19 / 40

  20. Comparisons for β = 0 and β = 2 / 15 0.25 (a) a/d = 0 . 25 η /d 0 0 6 0.5 (b) a/d = 0 . 5 η /d 0 0 6 0.75 (c) a/d = 0 . 75 η /d cSGN iSGN Euler 0 0 6 x/d D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 20 / 40

  21. Random wave field 0.2 (a) t � g/d = 0 cSGN η /d iSGN 0 Euler -0.2 -50 0 50 0.2 (b) t � g/d = 10 η /d 0 -0.2 -50 0 50 0.2 � (c) t g/d = 30 η /d 0 -0.2 -50 0 50 0.2 (d) t � g/d = 60 η /d 0 -0.2 -50 0 50 x/d D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 21 / 40

  22. Random wave field (zoom) 0.2 � t g/d = 60 η /d 0 cSGN iSGN Euler -0.2 0 25 x/d D IDIER C LAMOND (LJAD) Improved shallow water models ICERM, April 2017 22 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend