optimal control of two phase flow
play

Optimal Control of Two-Phase Flow Harald Garcke, Michael Hinze, - PowerPoint PPT Presentation

Optimal Control of Two-Phase Flow Harald Garcke, Michael Hinze, Christian Kahle RICAM special semester on Optimization WS1: New trends in PDE constrained optimization 14.10. 18.10.2019 Christian Kahle Optimal Control of Two-Phase Flow


  1. Optimal Control of Two-Phase Flow Harald Garcke, Michael Hinze, Christian Kahle RICAM special semester on Optimization WS1: New trends in PDE constrained optimization 14.10. – 18.10.2019 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 1/32

  2. Optimal control of two-phase flow Figure: without control Christian Kahle Optimal Control of Two-Phase Flow 10/2019 2/32

  3. Optimal control of two-phase flow Figure: without control Figure: with control Christian Kahle Optimal Control of Two-Phase Flow 10/2019 2/32

  4. Outline Setting The time discrete setting The fully discrete setting Numerical examples Christian Kahle Optimal Control of Two-Phase Flow 10/2019 3/32

  5. Outline Setting The time discrete setting The fully discrete setting Numerical examples Christian Kahle Optimal Control of Two-Phase Flow 10/2019 3/32

  6. Diffuse interface approach Setting: Two subdomains Ω 1 and Ω 2 separated by unknown Γ ǫ . Assumption: Γ ǫ of small thickness O( ǫ ) > 0 and components are mixed inside. Representation: Continuous order parameter ϕ for Ω 1 and Ω 2 . Christian Kahle Optimal Control of Two-Phase Flow 10/2019 4/32

  7. Diffuse interface approach Setting: Two subdomains Ω 1 and Ω 2 separated by unknown Γ ǫ . Assumption: Γ ǫ of small thickness O( ǫ ) > 0 and components are mixed inside. Representation: Continuous order parameter ϕ for Ω 1 and Ω 2 . ϕ Ω 2 1 − 1 Ω 1 Γ ǫ ϕ ( x ) = 1 ⇔ x ∈ Ω 1 ϕ ( x ) = − 1 ⇔ x ∈ Ω 2 − 1 < ϕ ( x ) < 1 ⇔ x ∈ Γ ǫ Christian Kahle Optimal Control of Two-Phase Flow 10/2019 4/32

  8. Diffuse interface approach Setting: Two subdomains Ω 1 and Ω 2 separated by unknown Γ ǫ . Assumption: Γ ǫ of small thickness O( ǫ ) > 0 and components are mixed inside. Representation: Continuous order parameter ϕ for Ω 1 and Ω 2 . ρ 2 ( x ) ϕ 1 Ω 2 ρ 2 ρ 1 ( x ) 1 ˜ ˜ ρ 1 − 1 0 Ω 1 Γ ǫ ϕ − 1 Ω 2 Ω 1 Γ ǫ , O( ǫ ) ϕ ( x ) = 1 ⇔ x ∈ Ω 1 ϕ ( x ) = ρ 1 ( x ) − ρ 2 ( x ) ϕ ( x ) = − 1 ⇔ x ∈ Ω 2 ρ 1 ˜ ρ 2 ˜ − 1 < ϕ ( x ) < 1 ⇔ x ∈ Γ ǫ Christian Kahle Optimal Control of Two-Phase Flow 10/2019 4/32

  9. The two-phase flow model [Abels, Garcke, Grün, 2012] v velocity, p pressure, ϕ phase field variable, µ chemical potential ρ∂ t v + (( ρv + J ) ⋅ ∇ ) v − div ( 2 ηDv ) + ∇ p = − ϕ ∇ µ + ρg, div v = 0 , ∂ t ϕ + v ⋅ ∇ ϕ − div ( m ∇ µ ) = 0 , − σǫ∆ϕ + σǫ − 1 W ′ ( ϕ ) = µ, where 2 Dv = ∇ v + ( ∇ v ) t , J = − ρ ′ ( ϕ ) m ( ϕ ) ∇ µ . ρ ( ϕ ) density, g gravity, 1 η ( ϕ ) viscosity, W s ǫ interfacial width, m ( ϕ ) mobility. σ surface tension, − 1 σ = c W σ phys , ϕ 1 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 5/32

  10. The free energy density W logarithmic: W log ( ϕ ) = θ 2 (( 1 + ϕ ) log ( 1 + ϕ ) + ( 1 − ϕ ) log ( 1 − ϕ )) + θ ϕ 2 ( 1 − ϕ 2 ) , polynomial: W poly ( ϕ ) = 1 4 ( 1 − ϕ 2 ) 2 , double-obstacle: W ∞ ( ϕ ) = 1 2 ( 1 − ϕ 2 ) iff ∣ ϕ ∣ ≤ 1 , ∞ else, relaxed double-obstacle: 2 ( max ( 0 ,ξϕ − 1 ) 2 + min ( 0 ,ξϕ + 1 ) 2 ) + θ . W s ( ϕ ) = 1 2 ( 1 − ( ξϕ ) 2 ) + s ∞ 1 1 1 1 W ∞ W s W log W poly − 1 − 1 − 1 − 1 ϕ ϕ ϕ ϕ 1 1 1 1 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 6/32

  11. Functions depending on ϕ ρ ( ϕ ) = η ( ϕ ) = W ( ϕ ) ϕ + ρ 2 − ρ 1 + η 2 − η 1 ρ 1 + ρ 2 η 1 + η 2 ϕ ϕ 2 2 2 2 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 7/32

  12. The formal energy inequality Theorem Let v,ϕ,µ denote a sufficiently smooth solution (if exists) and let 2 ∣ ∇ ϕ ( t )∣ 2 + 1 E ( t ) = ∫ Ω 2 ρ ( t )∣ v ( t )∣ 2 dx + σ ∫ Ω ǫ W ( ϕ ( t )) dx 1 ǫ denote the energy of the system. Let v ∣ ∂Ω = 0 hold. Then it holds dt E ( t ) = −∫ Ω 2 η ( ϕ )∣ Dv ∣ 2 dx −∫ Ω m ( ϕ )∣ ∇ µ ∣ 2 dx +∫ Ω gv dx , d E ( t 2 ) + ∫ ∫ Ω m ( ϕ ( s ))∣ ∇ µ ( s )∣ 2 dxds +∫ ∫ Ω 2 η ( ϕ ( s ))∣ Dv ( s )∣ 2 dxds t 2 t 2 t 1 t 1 = E ( t 1 ) + ∫ ∫ Ω gv ( s ) dxds t 2 t 1 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 8/32

  13. Applied Controls B u V = B u B = ϕ 0 = B u I = u I ∑ s V i = 1 f i ( x ) u V [ i ] , ∑ s B i = 1 g i ( x ) u B [ i ] , f i ∈ L 2 ( Ω ) n g i ∈ H 1 / 2 ( ∂Ω ) n u V ∈ L 2 ( 0 ,T ; R s V ) = U V , u B ∈ L 2 ( 0 ,T ; R s B ) = U B , u I ∈ K ∶= { v ∈ H 1 ( Ω ) ∩ L ∞ ( Ω )∣∣ v ∣ ≤ 1 , ( v, 1 ) = const } = U I , u = ( u V ,u B ,u I ) ∈ U = U V × U B × U I . Christian Kahle Optimal Control of Two-Phase Flow 10/2019 9/32

  14. The two-phase flow model with controls v velocity, p pressure, ϕ phase field variable, µ chemical potential ρ∂ t v + (( ρv + J ) ⋅ ∇ ) v − div ( 2 ηDv ) + ∇ p = − ϕ ∇ µ + ρg + B u V , div v = 0 , ∂ t ϕ + v ⋅ ∇ ϕ − div ( m ∇ µ ) = 0 , − σǫ∆ϕ + σǫ − 1 W ′ ( ϕ ) = µ, where 2 Dv = ∇ v + ( ∇ v ) t , J = − ρ ′ ( ϕ ) m ( ϕ ) ∇ µ , v ∣ ∂Ω = B u B , ϕ ( 0 ) = u I . ρ ( ϕ ) density, g gravity, 1 η ( ϕ ) viscosity, W s ǫ interfacial width, m ( ϕ ) mobility. σ surface tension, − 1 σ = c W σ phys , ϕ 1 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 10/32

  15. The optimal control problem The optimal control problem ϕ d : desired distribution, α V + α B + α I = 1 min J ( u I ,u V ,u B ,ϕ ) ∶ = 1 2 ∥ ϕ ( T ) − ϕ d ∥ 2 2 ∣ ∇ u I ∣ 2 + ǫ − 1 W u ( u I ) dx 2 ( α I ∫ Ω + α ǫ ( P ) α V ∥ u V ∥ 2 L 2 ( 0 ,T ; R sV ) + α B ∥ u B ∥ 2 L 2 ( 0 ,T ; R sB ) ) s.t. two-phase fluid dynamics, i.e. ϕ ≡ ϕ ( u V ,u B ,u I ) Christian Kahle Optimal Control of Two-Phase Flow 10/2019 11/32

  16. Outline Setting The time discrete setting The fully discrete setting Numerical examples Christian Kahle Optimal Control of Two-Phase Flow 10/2019 11/32

  17. A weak formulation Abbreviate a ( u,v,w ) ∶= 1 2 (( u ⋅ ∇ ) v,w ) − 1 2 (( u ⋅ ∇ ) w,v ) The model satisfies ∂ t ρ ( ϕ ) + div ( ρ ( ϕ ) v + J ) = −∇ µ ⋅ ∇ ρ ′ ( ϕ ) If ρ ( ϕ ) is linear (mass conservation) ρ∂ t v + (( ρv + J ) ⋅ ∇ ) v − div ( 2 ηDv ) = µ ∇ ϕ, ∂ t ( ρv ) + div ( ρv ⊗ v ) + div ( v ⊗ J ) − div ( 2 ηDv ) = µ ∇ ϕ. Then a weak formulation is 2 ( ρ∂ t v + ∂ t ( ρv ) ,w ) + a ( ρv + J,v,w ) + 2 ( ηDv,Dw ) = ( µ ∇ ϕ,w ) ∀ w ∈ H σ 1 Christian Kahle Optimal Control of Two-Phase Flow 10/2019 12/32

  18. An energy stable time discretization [Garcke, Hinze, K. 2016] B , ϕ 0 = u I ⋆ ∶= 1 t k − 1 u ⋆ ( t ) dt , v k ∣ ∂Ω = B u k τ ∫ t k u k τ ∫ Ω ( ρ k − 1 + ρ k − 2 v k − ρ k − 2 v k − 1 ) w dx 1 2 + a ( ρ k − 1 v k − 1 + J k − 1 ,v k ,w ) + ∫ Ω 2 η k − 1 Dv k ∶ Dw dx +∫ Ω ϕ k − 1 ∇ µ k ⋅ w dx −∫ Ω ρ k − 1 g ⋅ w dx −∫ Ω B u k V w dx = 0 ∀ w ∈ H σ ( Ω ) , τ ∫ Ω ( ϕ k − ϕ k − 1 ) Ψ dx −∫ Ω ϕ k − 1 v k ⋅ ∇ Ψ dx 1 +∫ Ω m ∇ µ k ⋅ ∇ Ψ dx = 0 ∀ Ψ ∈ H 1 ( Ω ) , σǫ ∫ Ω ∇ ϕ k ⋅ ∇ Φ dx −∫ Ω µ k Φ dx ǫ ∫ Ω (( W + ) ′ ( ϕ k ) + ( W − ) ′ ( ϕ k − 1 )) Φ dx = 0 ∀ Φ ∈ H 1 ( Ω ) . + σ (CHNS τ ) Christian Kahle Optimal Control of Two-Phase Flow 10/2019 13/32

  19. Energy inequality Theorem Let k ≥ 2 , ϕ k ,µ k ,v k be a solution to (CHNS τ ) , and u B ≡ 0 . Then the following energy inequality holds 2 ∫ Ω ρ k − 1 ∣ v k ∣ 2 ∣ ∇ ϕ k ∣ 2 + 1 ǫ W ( ϕ k ) dx 1 2 dx + σ ∫ Ω ǫ 2 ∫ Ω ρ k − 2 ∣ v k − v k − 1 ∣ 2 dx + σǫ 2 ∫ Ω ∣ ∇ ϕ k − ∇ ϕ k − 1 ∣ 2 dx + 1 + τ ∫ Ω 2 η k − 1 ∣ Dv k ∣ 2 dx + τ ∫ Ω m ∣ ∇ µ k ∣ 2 dx 2 ∫ Ω ρ k − 2 ∣ v k − 1 ∣ ≤ 1 2 ∣ ∇ ϕ k − 1 ∣ 2 + 1 ǫ W ( ϕ k − 1 ) dx 2 dx + σ ∫ Ω ǫ + ∫ Ω ρ k − 1 gv k dx + ∫ Ω ( B u k V ) v k dx Christian Kahle Optimal Control of Two-Phase Flow 10/2019 14/32

  20. Existence of a unique solution Theorem Let Ω denote a polygonally / polyhedrally bounded Lipschitz domain. Let v k − 1 ∈ H σ ( Ω ) , ϕ k − 2 ∈ H 1 ( Ω ) ∩ L ∞ ( Ω ) , ϕ k − 1 ∈ H 1 ( Ω ) ∩ L ∞ ( Ω ) , and µ k − 1 ∈ W 1 , 3 ( Ω ) be given data. Further let B u k V ∈ L 2 ( Ω ) n , 2 ( ∂Ω ) , B u I ∈ H 1 ( Ω ) ∩ L ∞ ( Ω ) be given data. B ∈ H 1 B u k Then there exists a weak solution ϕ k ∈ H 1 ( Ω ) ∩ C ( Ω ) , µ k ∈ W 1 , 3 ( Ω ) , v k ∈ H σ ( Ω ) to (CHNS τ ) . Furthermore, it can be found by Newton’s method. Christian Kahle Optimal Control of Two-Phase Flow 10/2019 15/32

  21. Initialization step B , ϕ 0 = u I For k = 1 we solve: v 1 ∣ ∂Ω = B u 1 τ ∫ Ω ( ρ 1 + ρ 0 v 1 − ρ 0 v 0 ) w dx + a ( ρ 1 v 0 + J 1 ,v 1 ,w ) 1 2 V w dx − ∫ Ω ρ 0 g ⋅ w = 0 ∀ w ∈ H σ ( + ∫ Ω 2 η 1 Dv 1 ∶ Dw dx − ∫ Ω µ 1 ∇ ϕ 0 w dx − ∫ Ω B u 1 τ ∫ Ω ( ϕ 1 − ϕ 0 ) Ψ dx −∫ Ω ϕ 0 v 0 ⋅ ∇ Ψ dx 1 +∫ Ω m ∇ µ 1 ⋅ ∇ Ψ dx = 0 ∀ Ψ ∈ H 1 ( σǫ ∫ Ω ∇ ϕ 1 ⋅ ∇ Φ dx −∫ Ω µ 1 Φ dx ǫ ∫ Ω (( W + ) ′ ( ϕ 1 ) + ( W − ) ′ ( ϕ 0 )) Φ dx = 0 ∀ Φ ∈ H 1 ( + σ (CHNS I τ ) Christian Kahle Optimal Control of Two-Phase Flow 10/2019 16/32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend