modelling steam methane reforming in a fixed bed reactor
play

Modelling steam methane reforming in a fixed bed reactor using - PowerPoint PPT Presentation

Modelling steam methane reforming in a fixed bed reactor using orthogonal collocation Kasper Linnestad Department of Chemical Engineering Norwegian University of Science and Technology December 3, 2014 Kasper Linnestad Reactor modelling


  1. Modelling steam methane reforming in a fixed bed reactor using orthogonal collocation Kasper Linnestad Department of Chemical Engineering Norwegian University of Science and Technology December 3, 2014 Kasper Linnestad Reactor modelling December 3, 2014 1 / 36

  2. Outline Theory 1 Governing equations 2 Implementation 3 Results 4 Conclusion 5 Kasper Linnestad Reactor modelling December 3, 2014 2 / 36

  3. Outline Theory 1 Weighted residuals method Collocation points Orthogonal collocation method Governing equations 2 Implementation 3 Results 4 Conclusion 5 Kasper Linnestad Reactor modelling December 3, 2014 3 / 36

  4. Theory Weighted residuals method General problem � � L f ( z, r ) = g ( z, r ) � � B f b ( z b , r b ) = g b ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  5. Theory Weighted residuals method General problem � � L f ( z, r ) = g ( z, r ) � � B f b ( z b , r b ) = g b ( z, r ) Approximation P z P r � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) j z =0 j r =0 Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  6. Theory Weighted residuals method General problem � � L f ( z, r ) = g ( z, r ) � � B f b ( z b , r b ) = g b ( z, r ) Approximation P z P r � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) j z =0 j r =0 Residual � � R ( z, r ) = L f ( z, r ) − g ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  7. Theory Weighted residuals method General problem Minimize residuals by � � � L f ( z, r ) = g ( z, r ) R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i � � B f b ( z b , r b ) = g b ( z, r ) Approximation P z P r � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) j z =0 j r =0 Residual � � R ( z, r ) = L f ( z, r ) − g ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  8. Theory Weighted residuals method General problem Minimize residuals by � � � L f ( z, r ) = g ( z, r ) R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i � � B f b ( z b , r b ) = g b ( z, r ) Orthogonal collocation uses Approximation P z P r a j z ,j r = f ( z j z , r j r ) � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) j z =0 j r =0 Residual � � R ( z, r ) = L f ( z, r ) − g ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  9. Theory Weighted residuals method General problem Minimize residuals by � � � L f ( z, r ) = g ( z, r ) R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i � � B f b ( z b , r b ) = g b ( z, r ) Orthogonal collocation uses Approximation P z P r a j z ,j r = f ( z j z , r j r ) � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) P x − x i � j z =0 j r =0 l n ( x ) = x n − x i i =0 i � = n Residual � � R ( z, r ) = L f ( z, r ) − g ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  10. Theory Weighted residuals method General problem Minimize residuals by � � � L f ( z, r ) = g ( z, r ) R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i � � B f b ( z b , r b ) = g b ( z, r ) Orthogonal collocation uses Approximation P z P r a j z ,j r = f ( z j z , r j r ) � � f ( z, r ) ≈ a j z ,j r l j z ( z ) l j r ( r ) P x − x i � j z =0 j r =0 l n ( x ) = x n − x i i =0 i � = n Residual w i ( z, r ) = δ ( z − z i z ) δ ( r − r i r ) � � R ( z, r ) = L f ( z, r ) − g ( z, r ) Kasper Linnestad Reactor modelling December 3, 2014 4 / 36

  11. Theory Collocation points 2 Legendre polynomials � 1 L m ( x ) L n ( x ) L m ( x ) d x = 0 , m � = n 0 − 1 − 2 − 1 − 0 . 5 0 0 . 5 1 x Kasper Linnestad Reactor modelling December 3, 2014 5 / 36

  12. Theory Collocation points 2 Legendre polynomials � 1 L m ( x ) L n ( x ) L m ( x ) d x = 0 , m � = n 0 − 1 Collocation points L m ( x i ) = 0 , ∀ i ∈ { 0 , . . . , m } − 2 − 1 − 0 . 5 0 0 . 5 1 x Kasper Linnestad Reactor modelling December 3, 2014 5 / 36

  13. Theory Orthogonal collocation method Minimize residuals by � R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i Orthogonal collocation uses a j z ,j r = f ( z j z , r j r ) P x − x i � l n ( x ) = x n − x i i =0 i � = n w i ( z, r ) = δ ( z − z i z ) δ ( r − r i r ) Kasper Linnestad Reactor modelling December 3, 2014 6 / 36

  14. Theory Orthogonal collocation method Minimize residuals by Inserted � ∀ i z ∈ { 0 , . . . , P z } R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i R ( z i z , r i r ) = 0 , i r ∈ { 0 , . . . , P r } Orthogonal collocation uses a j z ,j r = f ( z j z , r j r ) P x − x i � l n ( x ) = x n − x i i =0 i � = n w i ( z, r ) = δ ( z − z i z ) δ ( r − r i r ) Kasper Linnestad Reactor modelling December 3, 2014 6 / 36

  15. Theory Orthogonal collocation method Minimize residuals by Inserted � ∀ i z ∈ { 0 , . . . , P z } R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i R ( z i z , r i r ) = 0 , i r ∈ { 0 , . . . , P r } Orthogonal collocation uses System of equations � � a j z ,j r = f ( z j z , r j r ) L f ( z , r ) = g ( z , r ) � � P x − x i B f b ( z b , r b ) = g b ( z b , r b ) � l n ( x ) = x n − x i i =0 i � = n w i ( z, r ) = δ ( z − z i z ) δ ( r − r i r ) Kasper Linnestad Reactor modelling December 3, 2014 6 / 36

  16. Theory Orthogonal collocation method Minimize residuals by Inserted � ∀ i z ∈ { 0 , . . . , P z } R ( z, r ) w i ( z, r ) d z d r = 0 , ∀ i R ( z i z , r i r ) = 0 , i r ∈ { 0 , . . . , P r } Orthogonal collocation uses System of equations � � a j z ,j r = f ( z j z , r j r ) L f ( z , r ) = g ( z , r ) � � P x − x i B f b ( z b , r b ) = g b ( z b , r b ) � l n ( x ) = x n − x i i =0 i � = n Linearisation w i ( z, r ) = δ ( z − z i z ) δ ( r − r i r ) Af = b Kasper Linnestad Reactor modelling December 3, 2014 6 / 36

  17. Theory Linearisation Example function f ( ψ ) = ψ 2 + ψ exp ( − ψ ) Kasper Linnestad Reactor modelling December 3, 2014 7 / 36

  18. Theory Linearisation Example function f ( ψ ) = ψ 2 + ψ exp ( − ψ ) Fixed-point (Picard-iteration) � − ψ ⋆ �� ψ ⋆ + exp � f ( ψ ) ≈ ψ solves f ( ψ ) = 3 in 114 iterations Kasper Linnestad Reactor modelling December 3, 2014 7 / 36

  19. Theory Linearisation Example function f ( ψ ) = ψ 2 + ψ exp ( − ψ ) Fixed-point (Picard-iteration) � − ψ ⋆ �� ψ ⋆ + exp � f ( ψ ) ≈ ψ solves f ( ψ ) = 3 in 114 iterations Taylor (Newton-Raphson-iteration) � f ( ψ ) ≈ f ( ψ ⋆ ) + ∂f � ψ − ψ ⋆ � � � ∂ψ ψ ⋆ solves f ( ψ ) = 3 in 8 iterations Kasper Linnestad Reactor modelling December 3, 2014 7 / 36

  20. Outline Theory 1 Governing equations 2 Continuity equation Energy equation Species mass balance Ergun’s equation Initial and boundary conditions Implementation 3 Results 4 Conclusion 5 Kasper Linnestad Reactor modelling December 3, 2014 8 / 36

  21. Governing equations Fixed bed reactor r z Kasper Linnestad Reactor modelling December 3, 2014 9 / 36

  22. Governing equations Steam methane reforming Assumptions Pseudo-homogeneous Efficiency factor = 10 − 3 Reactions CH 4 + H 2 O = CO + 3 H 2 CO + H 2 O = CO 2 + H 2 CH 4 + 2 H 2 O = CO 2 + 4 H 2 Kasper Linnestad Reactor modelling December 3, 2014 10 / 36

  23. Governing equations Continuity equation General form ∂ρ ∂t + ∇ · ( ρ u ) = 0 Kasper Linnestad Reactor modelling December 3, 2014 11 / 36

  24. Governing equations Continuity equation General form ∂ρ ∂t + ∇ · ( ρ u ) = 0 Simplified ∂ρu z = 0 ∂z Kasper Linnestad Reactor modelling December 3, 2014 11 / 36

  25. Governing equations Continuity equation General form ∂ρ ∂t + ∇ · ( ρ u ) = 0 Simplified ∂ρu z = 0 ∂z Linearised ∂ρ ⋆ ρ ⋆ ∂u z ∂z + u z = 0 ∂z ���� � �� � ⇒ b uz ⇒ A uz Kasper Linnestad Reactor modelling December 3, 2014 11 / 36

  26. Governing equations Energy equation General form � ∂T � ρc p ∂t + u · ∇ T = −∇ · q − ∆ rx H Kasper Linnestad Reactor modelling December 3, 2014 12 / 36

  27. Governing equations Energy equation General form � ∂T � ρc p ∂t + u · ∇ T = −∇ · q − ∆ rx H Simplified � � ∂z = λ eff ∂T ∂ r ∂T − ∆ rx H ρc p u z r ∂r ∂r Kasper Linnestad Reactor modelling December 3, 2014 12 / 36

  28. Governing equations Energy equation General form � ∂T � ρc p ∂t + u · ∇ T = −∇ · q − ∆ rx H Simplified � � ∂z = λ eff ∂T ∂ r ∂T − ∆ rx H ρc p u z r ∂r ∂r Linearised � � ∂r + ∂ 2 T ∂T 1 ∂T ρ ⋆ c ⋆ p u ⋆ = λ eff ,⋆ − ∆ rx H ⋆ z ∂r 2 ∂z r � �� � � �� � ⇒ b T � �� � ⇒ A T ⇒ A T Kasper Linnestad Reactor modelling December 3, 2014 12 / 36

  29. Governing equations Species mass balance General form ∂ρω i + ∇ · ( ρ u ω i ) = −∇ · j i + R i ∂t Kasper Linnestad Reactor modelling December 3, 2014 13 / 36

  30. Governing equations Species mass balance General form ∂ρω i + ∇ · ( ρ u ω i ) = −∇ · j i + R i ∂t Simplified � � = D eff ∂ρu z ω i ∂ rρ ∂ω i − R i ∂z r ∂r ∂r Kasper Linnestad Reactor modelling December 3, 2014 13 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend