modelisation and simulation of sulphur dioxide aggression
play

Modelisation and simulation of sulphur dioxide aggression to - PowerPoint PPT Presentation

SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Modelisation and simulation of sulphur dioxide aggression to calcium carbonate stones D. AregbaDriollet IMB, Bordeaux 1 university Joint work with R. Natalini and F. Diele IAC-CNR


  1. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Modelisation and simulation of sulphur dioxide aggression to calcium carbonate stones D. Aregba–Driollet IMB, Bordeaux 1 university Joint work with R. Natalini and F. Diele IAC-CNR IMB, Bordeaux 1 university D. Aregba-Driollet

  2. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Aggression of buildings by pollutants: industry, transportation, heating. Here we study a model of deterioration of calcium carbonate stones CaCO 3 by sulphur dioxide SO 2 . Formation of gypsum CaSO 4 · 2 H 2 O . Simplified one-step reaction: CaCO 3 + SO 2 + 1 20 2 → H 2 O CaSO 4 · 2 H 2 O + CO 2 IMB, Bordeaux 1 university D. Aregba-Driollet

  3. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 The model � � A ∂ t ( ϕ ( c ) s ) = − ϕ ( c ) sc + d ∇ · ( ϕ ( c ) ∇ s ) m c � � A ∂ t c = − ϕ ( c ) sc m s c : density of CaCO 3 . s : porose concentration of SO 2 . ϕ : porosity. ϕ = intermediate limit of volume of void total volume ϕ ( c ) = α c + β, α, β > 0 . IMB, Bordeaux 1 university D. Aregba-Driollet

  4. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 A , d : positive constants. m c , m s , m g : molecular mass of calcite, SO 2 and gypsum. The amount of gypsum g is then given by c + m c g = c 0 + m c g 0 m g m g IMB, Bordeaux 1 university D. Aregba-Driollet

  5. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Analytical results F. Guarguaglini and R. Natalini 1. Local existence is classical 2. Global existence is more di ffi cult to degenerate parabolic problem: • no a priori H¨ older estimates • no a priori H s estimates • Nonlinear term in the GRADIENT ∇ s · ∇ c : not only a L ∞ estimate • no coupling conditions (Kawashima-Shizuta) IMB, Bordeaux 1 university D. Aregba-Driollet

  6. SO2 aggression to calcium carbonate stones MONUM, 05-09-08  ∂ t ( ϕ ( c ) s ) = div( ϕ ( c ) ∇ s ) − ϕ ( c ) cs ,      (1)      ∂ t c = − ϕ ( c ) cs ,   for ( x , t ) ∈ [ Ω × [0 , T ] ( T > 0 , Ω ⊂ R N ). ϕ ( c ) = α c + β > 0 in [0 , � c 0 � ∞ ] min { β, α � c 0 � ∞ } + β } ≥ ϕ m > 0 Initial conditions s ( x , 0) = s 0 ( x ) , c ( x , 0) = c 0 ( x ) bdy conditions for s s ( x , t ) = ψ ( x , t ) for ( x , t ) ∈ ∂ Ω × (0 , T ] IMB, Bordeaux 1 university D. Aregba-Driollet

  7. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Let P = N if N > 2, P > 2 if N = 2, P = 2 if N = 1. The data c 0 , s 0 , ψ are nonnegative functions such that s 0 ∈ W 2 , P 2 ( Ω ) ∩ L ∞ ( Ω ) , c 0 ∈ W 1 , P ( Ω ) ∩ L ∞ ( Ω ) ; (2) ψ ∈ C ([0 , T ]; W 2 , P P 2 ( Ω )) ∩ W 2 , P 2 ( Ω )) ∩ C 1 ([0 , T ]; L 2 ( Q T ) for all T > 0 ; (3) the trace of the function ψ verifies ψ ∈ L ∞ ( ∂ Ω × (0 , T )) for all T > 0 . (4) IMB, Bordeaux 1 university D. Aregba-Driollet

  8. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 W 2 , q ( Ω ) , ψ C ([0 , T ]; W 2 , q ( Ω )) ∩ Theorem Let s 0 , c 0 , ψ 0 , s 0 , c 0 ≥ ∈ ∈ C 1 ([0 , T ]; L q ( Ω ))) ∩ W 2 , q 2 ( Q T ) for all T > 0 and q > P . Then there ex- ists a nonnegative bounded global weak solution to problem (1), with ( s , c ) ∈ ( C ([0 , T ]; W 2 , q ( Ω )) ∩ C 1 ([0 , T ]; L q ( Ω ))) 2 . IMB, Bordeaux 1 university D. Aregba-Driollet

  9. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Numerical study of the 1D scaled model � ϕ ( c ) ∂ x s � = − ϕ ( c ) sc ∂ t ( ϕ ( c ) s ) − ∂ x ∂ t c = − ϕ ( c ) sc x ∈ Ω = ]0 , 1[ or ]0 , + ∞ [, t > 0. Initial conditions: s ( x , 0) = 0, c ( x , 0) = c 0 > 0. Boundary conditions: s (0 , t ) = s 0 ( t ), eventual Neumann condition for x = 1. IMB, Bordeaux 1 university D. Aregba-Driollet

  10. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Two approaches: finite di ff erences and finite elements. 1. Finite di ff erences: • Simple, no linear system to solve, easy to modify the time integration scheme. • Problems: – Meshing di ffi culties for 2D or 3D extensions. – Di ffi cult to increase the accuracy. 2. Finite elements: • Meshing, accuracy: great flexibility. • There is a linear system to solve. In both cases: semi-implicit treatment of the nonlinear source term No nonlinear algebraic system to solve. IMB, Bordeaux 1 university D. Aregba-Driollet

  11. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Finite di ff erences Main unknowns: ρ s = ϕ ( c ) s concentration of SO 2 , c . Approximation of of ∂ x ( a ( x ) ∂ x r ): ∆ m ( a , r ) : = ( a m + a m + 1 )( r m + 1 − r m ) − ( a m − 1 + a m )( r m − r m − 1 ) . 2 ∆ x 2 Notation: S ( ρ s , c ) = − ρ s c IMB, Bordeaux 1 university D. Aregba-Driollet

  12. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 The scheme ( θ ∈ [0 , 1]):  m e − ∆ t ρ n c n + 1 = c n s , m  m    ρ n + 1 s , m − ρ n ϕ n , ρ n  � � s , m s = S ((1 − θ ) ρ n s , m + θρ n + 1 s , m , c n + 1  − ∆ m m ) .   ϕ n  ∆ t  This is a semi-implicit first order scheme. As S is linear with respect to ρ s it can be written explicitly. The di ff erential term is not implicited: this would lead to a nonsymmetric linear system. IMB, Bordeaux 1 university D. Aregba-Driollet

  13. SO2 aggression to calcium carbonate stones MONUM, 05-09-08   ρ s   Denoting u =   :        c  u n + 1 − u n = F ( u n , ∆ x ) . lim ∆ t ∆ t → 0 Higher order in time by discretization of u ′ ( t ) = F ( u n , ∆ x ) . IMB, Bordeaux 1 university D. Aregba-Driollet

  14. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Proposition For all n ≥ 0, all m = 1 , . . . , N : ρ n c n s , m ≥ 0 , m ∈ [0 , c 0 ] under the time step restriction: β ∆ x 2 ∆ t ≤ ϕ 0 + β (1 + ∆ x 2 c 0 (1 − θ )) where ϕ 0 = ϕ ( c 0 ). IMB, Bordeaux 1 university D. Aregba-Driollet

  15. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Finite elements P1 approximation for s P0 approximation for c . Denote σ ( x , t ) = s ( x , t ) − s (0 , t ): ∂ t ( ϕ ( c ) σ ) − ∂ x ( ϕ ( c ) ∂ x σ ) = F ( σ, c , t ) Functionnal space: H = { u ∈ H 1 (]0 , 1[) , u (0) = 0 } IMB, Bordeaux 1 university D. Aregba-Driollet

  16. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Variational formulation Find ( σ, c ) ∈ C 1 ([0 , + ∞ [ , H × L 2 (]0 , 1[)) such that for all ( p , q ) ∈ H × L 2 (]0 , 1[): � � �  ∂ t ϕσ pdx + ϕ∂ x σ∂ x pdx = pFdx ,     ]0 , 1[ ]0 , 1[ ]0 , 1[        � �    ∂ t ϕ ( σ + s (0 , . )) cqdx . cqdx = −     ]0 , 1[ ]0 , 1[ IMB, Bordeaux 1 university D. Aregba-Driollet

  17. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Discrete problem Regular mesh: [0 , 1] = ∪ 1 ≤ i ≤ N [ x i , x i + 1 ] , x i = ( i − 1) ∆ x , ∆ x = 1 / N . p i , i = 1 , . . . , N + 1 : classical P1 basis functions. q i , i = 1 , . . . , N :characteristic function of [ x i , x i + 1 [. The solution ( s , c ) is approximated by N + 1 N � � s h ( x , t ) = ξ i ( t ) p i ( x ) , c h ( x , t ) = η k ( t ) q k ( x ) . i = 1 k = 1 IMB, Bordeaux 1 university D. Aregba-Driollet

  18. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 The discrete variational problem (without boundary condition):  ∂ t ( M ( η ) ξ ) + K ( η ) ξ = 0 ,          ∂ t η k = − ( ξ k + ξ k + 1 )   η k ( αη k + β ) = − γ k η k ( αη k + β ) , k = 1 , . . . , N .    2 M ( η ) and K ( η ) are tridiagonal symmetric matrices. � x k + 1 N � M ij ( η ) = ϕ ( η k ) p i p j dx , x k k = 1 � x k + 1 N � � � p ′ i p ′ K ij ( η ) = ϕ ( η k ) j + η k p i p j dx x k k = 1 IMB, Bordeaux 1 university D. Aregba-Driollet

  19. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Resolution 1. Fix ξ n and solve exactly on [ t n , t n + 1 ] the equation for η k , k = 1 , . . . , N : one obtains η n + 1 . 2. Fix η = η n + 1 and solve the system for ξ by the θ method: one obtains ξ n + 1 . Order two in time: by Heun scheme. One has to solve a linear system. IMB, Bordeaux 1 university D. Aregba-Driollet

  20. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Proposition Suppose that θ ∈ ]1 / 3 , 1] and ∆ x 2 < 3(3 θ − 1) . If the time c 0 step satisfies the condition ∆ x 2 ∆ x 2 θ (6 − c 0 ∆ x 2 ) < ∆ t ≤ (1 − θ )(3 + c 0 ∆ x 2 ) then for all x ∈ [0 , 1], c h ( x , . ) is a non increasing function of t and for all t ≥ 0: ρ s , h ( x , t ) ≥ 0 , c h ( x , t ) ∈ ]0 , c 0 ] . Moreover the condition is not empty. No upper bound on ∆ t for θ = 1. Uniform bound also for ρ s with additional conditions. IMB, Bordeaux 1 university D. Aregba-Driollet

  21. SO2 aggression to calcium carbonate stones MONUM, 05-09-08 Numerical results 1. Finite di ff erence and finite element methods give comparable results 2. For the finite element method with θ = 1: good results with ∆ t = ∆ x 3. For θ = 1 / 2: the numerical order of accuracy is γ = 2. (Heun scheme for FE) 4. Order 3 in time does not improve the numerical order of accuracy for FD IMB, Bordeaux 1 university D. Aregba-Driollet

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend