mode coupling theory of single file diffusion
play

Mode-coupling theory of single-file diffusion Ooshida Takeshi ( ) - PowerPoint PPT Presentation

Mode-coupling theory of single-file diffusion Ooshida Takeshi ( ) in collaboration with S. Goto, T. Matsumoto, A. Nakahara & M. Otsuki arXiv:1212.6947 (submitted to PRE) Physics of glassy and granular materials YITP


  1. Mode-coupling theory of single-file diffusion Ooshida Takeshi ( 大信田 丈志 ) in collaboration with S. Goto, T. Matsumoto, A. Nakahara & M. Otsuki arXiv:1212.6947 (submitted to PRE) Physics of glassy and granular materials YITP (Kyoto), 2013-Jul-17

  2. Outline • Introduction – MCT: theory of F and M √ – SFD is slow: ⟨ R 2 ⟩ ∝ t • Problem: improve over standard MCT, as it does not work in 1D • Lagrangian MCT – formulation – results √ 4 ≃ const . + 0 . 6454 × ρ 0 /S χ S k B T a 2 ⟨ R 2 ⟩ = c 0 t + c 1 t 1 / 4 ( c 1 < 0)

  3. Slow dynamics due to “crowdedness” shrine on the Gion festival: New Year’s day Parade’s Eve repulsive Brownian particles r i − ∂ ∑ m ¨ r i = − µ ˙ V ( r jk ) + µ f i ( t ) ∂ r i j<k = 2 k B T ⟨ f i ( t ) ⊗ f j ( t ′ ) ⟩ δ ij δ ( t − t ′ ) 1 1 µ cage effect

  4. Mode-Coupling Theory (MCT) for glassy liquids Equation for the correlation F ( k, t ) ∝ ⟨ ˆ ρ ( k, t )ˆ ρ ( − k, 0) ⟩ ∫ t ( ∂ t + D c k 2 ) 0 d t ′ M ( k, t − t ′ ) ∂ t ′ F ( k, t ′ ) F ( k, t ) = − V 2 F ( p, s ) F ( q, s ) ∑ M ( k, s ) ∝

  5. A theory for the two aspects of caged dynamics? • each particle is confined within a narrow space • collective motion of numerous particles is produced F ( k, t ) ∝ ⟨ ˆ ρ ˆ ρ ⟩ ❏ ❏ ❏ ❏ ρ 0 , σ ; S ( k ) 2 k 2 ⟨ R 2 ⟩ MCT F s = 1 − 1 ✡ ✡ ✡ ✡ + · · · χ 4 ( t ) 4-point corr. ρ 0 , σ ; S ( k ) λ ( t ) dyn. corr. length ❏ ❏ ❏ ❏ ?? ✡ ✡ ✡ ✡ short range long range dynamical

  6. Single-File Diffusion (SFD): eternal cages 1D system of Brownian particles + “no-passing” repulsive interaction ∂ m ¨ X i = − µ ˙ ∑ X i − V ( X k − X j ) + µf i ( t ) ∂X i interaction random force j<k a problem of 1965-vintage: Harris (1965), Jepsen (1965), Levitt (1973), ... t model of ideal cages, polymer entanglement etc. Rallison, JFM 186 (1988) Miyazaki & Yethiraj, JCP 117 (2002) Lef` evre et al. , PRE 72 (2005) Miyazaki, Bussei Kenkyˆ u 88 (2007) Abel et al. , PNAS 106 (2009) Ooshida et al. , JPSJ 80 (2011) x

  7. SFD is slow ≪ Dt ≪ L 2 → ∞ ρ − 2 0 def R j = X j ( t ) − X j (0); study long-time behavior of MSD ⟨ R 2 ⟩ • free Brownian particles ( V = 0): ∝ t √ = 2 S D c t ⟨ R 2 ⟩ ∝ t 1 / 2 • “no passing” ( V max = ∞ ): ρ 0 π Kollmann, PRL 90 (2003)

  8. SFD is ‘‘glassy”: structure behind the slow dynamics ⟨ R 2 ⟩ vs t static structure factor S ( q ) = 1 ⟨ [ ( )]⟩ ∑ exp i q X j − X i N i,j something beyond S ( q ): glassy dynamical structure?

  9. Collective motion in space–time diagram particles moved leftwards ( × ) and rightwards ( ⃝ ) relatively to their initial position 700 600 500 D t / σ 2 400 time 300 200 100 0 1550 1600 1650 1700 1750 position x / σ

  10. Standard MCT fails in predicting subdiffusion for SFD 2-time correlation of single particle density ρ j = δ ( x − X j ( t )) = 1 − 1 2 k 2 ⟨ R 2 ⟩ + · · · e i k ( X j ( t ) − X j (0) ) ⟩ ⟨ F s ( k, t ) = ⟨ R 2 ⟩ For large t , MCT predicts ∝ t wrong! Miyazaki, Bussei Kenkyˆ u 88 (2007); Abel et al. , PNAS 106 (2009) t • “no passing” rule → space-time 4-point correlation x • Eulerian description with the density field: ⟨ ρ ( r 1 , 0) ρ ( r 1 , t ) ρ ( r 2 , 0) ρ ( r 2 , t ) ⟩ ← 4-body correlation • MCT approximates ⟨ ˆ ρ ˆ ρ ˆ ρ ˆ ρ ⟩ with FF limited accuracy

  11. Construct MCT of SFD ... how? F ( k, t ) ∝ ⟨ ˆ ρ ˆ ρ ⟩ ❏ ❏ ❏ ❏ ρ 0 , σ ; S ( k ) 2 k 2 ⟨ R 2 ⟩ MCT F s = 1 − 1 ✡ ✡ ✡ ✡ MSD + · · · ∫ M∂ t ′ F d t ′ ( ∂ t + · · · ) F = − ∫ M S ∂ t ′ F s d t ′ ( ∂ t + · · · ) F s = − • improve M S Miyazaki (2007); Abel et al. (2009) • abandon M S and replace it with something else Ooshida et al. , arXiv:1212.6947 N.B. M is employed anyway

  12. How to do without M S : Lagrangian correlation • introduce label variable ξ : x = x ( ξ, t ) Lagrangian description Eulerian description construct ξ = ξ ( x, t ) as a potential of the indep. var. ( x, t ) cont. eq.: Lagrangian description ρ = ∂ x ξ , Q = − ∂ t ξ so that indep. var. ( ξ, t ) ∂ x ρ + ∂ x Q = 0 ( ∂ t + u∂ x ) ξ = 0 t • space-time 4-point correlation → 2-body Lagrangian correlation Key : 2pDC ⟨ R ( ξ, t ) R ( ξ ′ , t ) ⟩ R ( ξ, t ) = x ( ξ, t ) − x ( ξ, 0) x

  13. Lagrangian MCT ⟨ ˇ C ( k, t ) = N ψ ˇ ˇ ⟩ ψ L 2 ⟨ R ( ξ, t ) R ( ξ ′ , t ) ⟩ L-MCT 2-pa. disp. corr. ❏ ❏ ❏ ❏ ρ 0 , σ ; S ( k ) + ⇓ ✡ ✡ ✡ ✡ √ ⟨ R 2 ⟩ = c 0 m-AP t + c 1 S ⟩ − ⟨Q S ⟩ 2 χ S 4 = ⟨Q 2 = · · · • Rewrite the Langevin eq. with new variables • Calculate ˇ C with Lagrangian MCT eq. • Obtain two-particle displacement corr. ⟨ RR ⟩ from ˇ C with modified Alexander–Pincus formula • 2pDC yields MSD and χ S 4

  14. Rewrite Langevin eq. with label variable differential operators: ∂ x = ∂ξ 100 ∂x∂ ξ = ρ∂ ξ X i+1 − X i ∝ 1+ψ ( ξ , t ) ( ∂ t · ) x = ( ∂ t · ) ξ − Q∂ ξ time 50 kinematic relation for particle interval [ ] ( ) 1 Q ∂ t = ∂ ξ 0 220 230 240 ρ ( ξ, t ) position ρ particle interval ρ ( ξ, t ) = 1 + ψ ( ξ, t ) 1 then we introduce ψ to write ρ 0 ( ) Q ∂ t ρ ( x, t ) + ∂ x Q = 0 → ∂ t ψ ( ξ, t ) = − ρ 0 ∂ ξ ρ

  15. Eulerian vs Lagrangian: different nonlinearities Langevin eq. in the x -space (“Eulerian”)   ρ  + f ρ ( x, t )  ∂ x ρ ∂ t ρ ( x, t ) = D∂ x + k B T ∂ x U linear nonlinear! nonlinear ⟨ f ρ ( x, t ) f ρ ( x ′ , t ′ ) ⟩ = 2 D∂ x ∂ x ′ ρ ( x, t ) δ ( x − x ′ ) δ ( t − t ′ ) multiplicative noise Langevin eq. in the ξ -space (“Lagrangian”)   ( ) 1 ρ ∂ t ψ ( ξ, t ) = − ρ 2  ∂ ξ  + f L 0 D∂ ξ + ρ 0 k B T ∂ ξ U 1 + ψ harmless nonlinear nonlinear ⟨ f L ( ξ, t ) f L ( ξ ′ , t ′ ) ⟩ δ ( ξ − Ξ i ) δ ( ξ − ξ ′ ) δ ( t − t ′ ) ∑ = 2 D∂ ξ ∂ ξ ′ i → no FDT-violation

  16. Derivation of Lagrangian MCT eq. Langevin eq. for ψ ψ ( k, t ) = 1 ∫ d ξ e i kξ ψ ( ξ, t ) ˇ → Fourier representation N ⟨ ˇ ⟩ : = N C def ˇ ψ ( k, t ) ˇ → equation for ψ ( − k, 0) L 2 [ ] ∂ t + D ∗ S ( k ) k 2 ˇ C ( k, t ) ⟨ ˇ ⟩ + ρ 0 ⟨ ˇ = N V pq ψ ( − p, t ) ˇ ψ ( − q, t ) ˇ f L ˇ ∑ ⟩ ψ ( − k, 0) ψ ( − k, 0) k L 2 vanishes! where ) − 1 ( 1 + 2 sin ρ 0 σk D ∗ = ρ 2 S = 0 D, k ( ) 1 + k pq sin ρ 0 σk + p kq sin ρ 0 σp + q V pq k = D ∗ k 2 W pqk = D ∗ k 2 kp sin ρ 0 σq symmetrical

  17.  ⟨ ⟩ f L ˆ ˇ ψ vanishes  symmetry of W pqk  → field-theoretical closure consistent with FDT Lagrangian MCT eq. ∫ t ∂ t + D ∗ ( ) S k 2 0 d t ′ M ( k, t − t ′ ) ∂ t ′ ˇ C ( k, t ′ ) ˇ C ( k, t ) = − M ( k, s ) = 2 L 4 N D ∗ k 2 W 2 ∑ pqk ˇ C ( p, s ) ˇ C ( q, s ) p + q = k W pqk = 1 + k pq sin ρ 0 σk + p kq sin ρ 0 σp + q kp sin ρ 0 σq N.B. long-wave limit of W is regular (as p + q + k = 0): W pqk ≃ 1+3 ρ 0 σ

  18. p = const. /(1+ψ) Solution to L-MCT eq. Focus on “ideal” entropic nonlinearity: for ρ 0 σ → +0, ( ) ρ 0 U vanishes but D∂ ξ remains nonlinear 1 + ψ ψ 0 C ≃ e − ρ 2 0 Dk 2 t   √  1 + 2 2 πρ 3 0 k 4 ( Dt ) 3 / 2 ˇ + · · ·  L 2 3 linear solution correction due to M L-MCT ˇ C ( k, t ) ❏ ❏ ❏ ❏ ρ 0 , σ ; S ( k ) + ✡ ✡ ⟨ R ( ξ 1 ) R ( ξ 2 ) ⟩ ✡ ✡ m-AP

  19. Calculate 2pDC: modified Alexander–Pincus formula ∫ t t )� ∂x ( ξ, ˜ ( t ) 1 + ψ ∂x ∂ξ = 1 ρ = 1 + ψ t = ∂ − 1 � d˜ R = � ξ ∂ ˜ � t ρ 0 ρ 0 0 0 � Two-particle displ. corr. ( 2pDC ) calculated from ⟨ ψψ ⟩ : ∫ ∞ L 4 −∞ d k e − i k ( ξ − ξ ′ ) ˇ C ( k, 0) − ˇ C ( k, t ) ⟨ R ( ξ, t ) R ( ξ ′ , t ) ⟩ = ( ♢ ) πN 2 k 2 ⟨ ˇ = N C ( k, t ) def ψ ( k, t ) = 1 ∫ where ˇ ψ ( k, t ) ˇ ⟩ ˇ d ξ e i kξ ψ ( ξ, t ) ψ ( − k, 0) L 2 N Lagrangian corr. cf. Alexander & Pincus, PRB 18 (1978): ∫ ∞ −∞ d q F ( q, 0) − F ( q, t ) ← Eulerian corr. ⟨ R ( t ) 2 ⟩ ≃ const. × q 2

  20. 2pDC calculated via L-MCT + m-AP √ − ( ξ − ξ ′ ) 2 [ ] = 2 S D c t ⟨ R ( ξ, t ) R ( ξ ′ , t ) ⟩ exp 4 ρ 2 ρ 0 π 0 D c t | ξ − ξ ′ | − S | ξ − ξ ′ | erfc √ D c t + [correction] ρ 2 2 ρ 0 0 dynamical corr. length: λ ( t ) = 2 √ D c t , grows in time diffusively) = ξ − ξ ′ ξ − ξ ′ def ρ 0 λ ( t ) = √ D c t θ 2 ρ 0 ⟨ R ( ξ, t ) R ( ξ ′ , t ) ⟩ σ √ D c t ≃ ϕ ( θ ) ( e − θ 2 ) = 2 S √ π − | θ | erfc | θ | ρ 0 σ ← direct numerical simulation (Langevin eq. for particles) N = 3000, ρ 0 = N/L = 0 . 2 σ − 1 no ensemble averaging

  21. Behavior of MSD Hahn & K¨ arger (1995); Kollmann (2003) √ ≃ 2 S D c t R 2 ⟩ ⟨ ρ 0 π Rallison, JFM 186 (1988) √ = 2 S D c t R 2 ⟩ ⟨ ρ 0 π √ − S log ( 4 πD c t ) 1 + ρ 0 πρ 2 0 present √ ρ 0 σ = 0 . 25, S = 0 . 624 √ = 2 S 2 D c t R 2 ⟩ 3 π ρ − 2 ⟨ − 0 ρ 0 π

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend