mixed integer nonlinear programming
play

Mixed-Integer Nonlinear Programming Leo Liberti LIX, Ecole - PowerPoint PPT Presentation

Mixed-Integer Nonlinear Programming Leo Liberti LIX, Ecole Polytechnique, France MPRO PMA p. 1 Motivating applications MPRO PMA p. 2 Haverlys pooling problem MPRO PMA p. 3 Description Given an oil routing


  1. Mixed-Integer Nonlinear Programming Leo Liberti LIX, ´ Ecole Polytechnique, France MPRO — PMA – p. 1

  2. Motivating applications MPRO — PMA – p. 2

  3. Haverly’s pooling problem MPRO — PMA – p. 3

  4. Description Given an oil routing network with pools and blenders, unit prices, demands and quality requirements: ≤ 2.5% Sulphur x 11 3% Sulphur y 11 ≤ 100 Blend 1 $ 9 $ 6 Pool x 21 1% Sulphur y 21 y 12 $ 16 ≤ 1.5% Sulphur x 12 2% Sulphur ≤ 200 Blend 2 $ 15 y 22 $ 10 Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands MPRO — PMA – p. 4

  5. Variables and constraints Variables: input quantities x , routed quantities y , percentage p of sulphur in pool Every variable must be ≥ 0 (physical quantities) Bilinear terms arise to express sulphur quantities in terms of p, y Sulphur balance constraint: 3 x 11 + x 21 = p ( y 11 + y 12 ) Quality demands: py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 ) Continuous bilinear formulation ⇒ nonconvex NLP MPRO — PMA – p. 5

  6. Formulation ≤ 2.5% Sulphur y 11 3% Sulphur ≤ 100 x 11 Blend 1 $ 9 $ 6 Pool 1% Sulphur y 21 x 21 y 12 $ 16 ≤ 1.5% Sulphur 2% Sulphur ≤ 200 x 12 Blend 2 $ 15 y 22 $ 10  min 6 x 11 + 16 x 21 + 10 x 12 −  x,y,p     − 9( y 11 + y 21 ) − 15( y 12 + y 22 )  cost      x 11 + x 21 − y 11 − y 12 = 0 s.t. mass balance      x 12 − y 21 − y 22 = 0  mass balance    y 11 + y 21 ≤ 100 demand    y 12 + y 22 ≤ 200 demand      3 x 11 + x 21 − p ( y 11 + y 12 ) = 0  sulphur balance      py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) sulphur limit      py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 )  sulphur limit MPRO — PMA – p. 6

  7. Network design Decide whether to install pipes or not (0/1 decision) Associate a binary variable z ij with each pipe  6 x 11 + 16 x 21 + 10 x 12 + � min ij θ ij z ij −   x,y,p,z     − 9( y 11 + y 21 ) − 15( y 12 + y 22 ) cost       s.t. x 11 + x 21 − y 11 − y 12 = 0 mass balance      x 12 − y 21 − y 22 = 0  mass balance      y 11 + y 21 ≤ 100 demand  y 12 + y 22 ≤ 200 demand      ∀ i, j ≤ 2 y ij ≤ 200 z ij pipe activation: if z ij = 0 , no flow       3 x 11 + x 21 − p ( y 11 + y 12 ) = 0 sulphur balance       py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) sulphur limit      py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 )  sulphur limit  MPRO — PMA – p. 7

  8. The optimal network ≤ 2.5% Sulphur 3% Sulphur ≤ 100 x 11 = 0 Blend 1 $ 9 $ 6 Pool x 21 = 100 1% Sulphur y 12 = 100 $ 16 ≤ 1.5% Sulphur x 12 = 100 2% Sulphur ≤ 200 Blend 2 $ 15 y 22 = 100 $ 10 z 11 = 0 , z 21 = 0 z 12 = 1 , z 22 = 1 MPRO — PMA – p. 8

  9. Citations 1. C. Haverly, Studies of the behaviour of recursion for the pooling problem , ACM SIGMAP Bulletin, 1978 2. Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to the pooling problem , Ind. Eng. Chem., 1999 3. Audet et al., Pooling Problem: Alternate Formulations and Solution Methods , Manag. Sci., 2004 4. Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms , JOGO, 2006 5. Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies , Appl. Comput. Math., 2009 6. D’Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables , LNCS, 2011 MPRO — PMA – p. 9

  10. Drawing graphs MPRO — PMA – p. 10

  11. At a glance 0 1 8 4 3 6 3 1 6 8 2 9 9 2 4 5 0 7 3 7 1 2 4 5 0 6 6 9 8 7 2 1 6 9 5 1 5 0 3 8 4 4 7 8 3 0 5 2 9 7 Which graph has most symmetries? MPRO — PMA – p. 11

  12. Euclidean graphs Graph G = ( V, E ) , edge weight function d : E → R + E.g. V = { 1 , 2 , 3 } , E = {{ 1 , 2 } , { 1 , 3 } , { 2 , 3 }} d 12 = d 13 = d 23 = 1 Find positions x v = ( x v 1 , x v 2 ) of each v ∈ V in the plane s.t.: ∀{ u, v } ∈ E � x u − x v � 2 = d uv Generalization to R K for K ∈ N : x v = ( x v 1 , . . . , x vK ) 2 3 1 MPRO — PMA – p. 12

  13. Application to proteomics An artificial protein test set: lavor-11 7 26 / 1.526 10 9 25 / 2.49139 23 / 2.88882 24 / 1.526 22 / 2.49139 7 21 / 1.526 20 / 2.78861 18 / 1.526 37 / 3.22866 8 30 / 3.79628 19 / 2.49139 28 / 3.96678 6 16 / 2.49139 36 / 3.55753 29 / 3.00337 17 / 3.08691 35 / 3.13225 15 / 1.526 14 / 2.89935 2 33 / 3.15931 31 / 2.60831 34 / 2.68908 8 / 3.8356 13 / 2.49139 27 / 3.38763 1 / 2.49139 32 / 2.10239 5 11 / 3.03059 7 / 2.49139 6 / 1.526 12 / 1.526 3 / 1.526 0 10 / 2.49139 0 / 1.526 2 / 3.8393 4 5 / 3.83142 9 / 1.526 4 / 2.49139 1 3 MPRO — PMA – p. 13

  14. Embedding protein data in R 3 1aqr : four non-isometric embeddings MPRO — PMA – p. 14

  15. Sensor networks in 2D and 3D MPRO — PMA – p. 15

  16. Formulation � t 2 min uv x,t { u,v }∈ E � ( x uk − x vk ) 2 d 2 ∀{ u, v } ∈ E = uv + t uv k ≤ K MPRO — PMA – p. 16

  17. Citations 1. Lavor, Liberti, Maculan, Mucherino, Recent advances on the discretizable molecular distance geometry problem , Eur. J. of Op. Res., invited survey 2. Liberti, Lavor, Mucherino, Maculan, Molecular distance geometry methods: from continuous to discrete , Int. Trans. in Op. Res., 18 :33-51, 2010 3. Liberti, Lavor, Maculan, Computational experience with the molecular distance geometry problem , in J. Pintér (ed.), Global Optimization: Scientific and Engineering Case Studies , Springer, Berlin, 2006 MPRO — PMA – p. 17

  18. Mathematical Programming Formulations MPRO — PMA – p. 18

  19. Mathematical Programming MP: formal language for expressing optimization problems P Parameters p = problem input p also called an instance of P Decision variables x : encode problem output Objective function min f ( p, x ) Constraints ∀ i ≤ m g i ( p, x ) ≤ 0 f, g : explicit mathematical expressions involving symbols p, x If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write f ( x ) , g i ( x ) This excludes black-box optimization MPRO — PMA – p. 19

  20. Main optimization problem classes integer BQP gen. pooling MBQP SOCP SDP pooling LP BLP cNLP graph drawing MILP continuous NLP cMINLP MINLP blackbox linear nonlinear MPRO — PMA – p. 20

  21. Notation P : MP formulation with decision variables x = ( x 1 , . . . , x n ) Solution : assignment of values to decision variables, i.e. a vector v ∈ R n F ( P ) = set of feasible solutions x ∈ R n such that ∀ i ≤ m ( g i ( x ) ≤ 0) G ( P ) = set of globally optimal solutions x ∈ R n s.t. x ∈ F ( P ) and ∀ y ∈ F ( P ) ( f ( x ) ≤ f ( y )) MPRO — PMA – p. 21

  22. Citations Williams, Model building in mathematical programming , 2002 Liberti, Cafieri, Tarissan, Reformulations in Mathematical Programming: a computational approach , in Abraham et al. (eds.), Foundations of Comput. Intel., 2009 MPRO — PMA – p. 22

  23. Reformulations MPRO — PMA – p. 23

  24. Exact reformulations The formulation Q is an exact reformulation of P if ∃ an efficiently computable surjective map φ : F ( Q ) → F ( P ) s.t. φ | G ( Q ) is onto G ( P ) Informally: any optimum of Q can be mapped easily to an optimum of P , and for any optimum of P there is a corresponding optimum of Q P Q G G φ | G F F φ Construct Q so that it is easier to solve than P MPRO — PMA – p. 24

  25. xy when x is binary If ∃ bilinear term xy where x ∈ { 0 , 1 } , y ∈ [0 , 1] We can construct an exact reformulation : Replace each term xy by an added variable w Adjoin Fortet’s reformulation constraints: ≥ 0 w ≥ x + y − 1 w ≤ w x ≤ w y Get a MILP reformulation Solve reformulation using CPLEX: more effective than solving MINLP MPRO — PMA – p. 25

  26. “Proof” MPRO — PMA – p. 26

  27. Relaxations The formulation Q is a relaxation of P if min f Q ( y ) ≤ min f P ( x ) ( ∗ ) Relaxations are used to compute worst-case bounds to the optimum value of the original formulation Construct Q so that it is easy to solve Proving ( ∗ ) may not be easy in general The usual strategy : Make sure y ⊃ x and F ( Q ) ⊇ F ( P ) Make sure ∀ x ∈ F ( P ) ( f Q ( y ) ≤ f P ( x )) Then it follows that Q is a relaxation of P Example: convex relaxation F ( Q ) a convex set containing F ( P ) f Q a convex underestimator of f P Then Q is a cNLP and can be solve efficiently MPRO — PMA – p. 27

  28. xy when x, y continuous Get bilinear term xy where x ∈ [ x L , x U ] , y ∈ [ y L , y U ] We can construct a relaxation : Replace each term xy by an added variable w Adjoin following constraints: x L y + y L x − x L y L ≥ w x U y + y U x − x U y U ≥ w x U y + y L x − x U y L ≤ w x L y + y U x − x L y U ≤ w These are called McCormick’s envelopes Get an LP relaxation (solvable in polynomial time) MPRO — PMA – p. 28

  29. Software ROSE ( https://projects.coin-or.org/ROSE ) MPRO — PMA – p. 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend