minimizers of non local energies and ellipses
play

Minimizers of non local energies, and ellipses Joan Verdera - PowerPoint PPT Presentation

Minimizers of non local energies, and ellipses Joan Verdera Universitat Aut` onoma de Barcelona Garnett-Marshall Conference, August 19-23 , 2019 Joan Verdera Minimizers. . . The ellipse law : Kirchhoff meets dislocations Coauthors : Carrillo


  1. Minimizers of non local energies, and ellipses Joan Verdera Universitat Aut` onoma de Barcelona Garnett-Marshall Conference, August 19-23 , 2019 Joan Verdera Minimizers. . .

  2. The ellipse law : Kirchhoff meets dislocations Coauthors : Carrillo (London), Mateu (Barcelona), Mora (Pavia), Rondi(Milano), Scardia (Edinburgh) Joan Verdera Minimizers. . .

  3. The Euler equation in the plane v ( z, t ) velocity field of an ideal incompressible fluid  ∂ t v ( z, t ) + ( v · ∇ ) v ( z, t ) = −∇ p ( z, t )     ( E ) div v = 0     v ( z, 0) = v 0 ( z ) v · ∇ = v 1 ∂ 1 + v 2 ∂ 2 Joan Verdera Minimizers. . .

  4. Acceleration and force Particle trajectory : dz ( t ) /dt = v ( z ( t ) , t ) d 2 z dt 2 = ∂ t v ( z ( t ) , t ) + ∂ 1 v ( z ( t ) , t ) v 1 ( z ( t ) , t ) + . . . = ∂ t v ( z, t ) + ( v · ∇ ) v ( z, t ) Pressure and force � � force on blob V = − p� n dS = −∇ p dx ∂V V Joan Verdera Minimizers. . .

  5. Incompressibility : the velocity field is divergence free � � 0 = v · � n dS = div( v ) dx ∂V V Joan Verdera Minimizers. . .

  6. Vorticity ω = curl( v ) = ∂ 1 v 2 − ∂ 2 v 1 2 ∂v = 2 ∂ ∂z v = div v + i curl v = iω 1 ∂ = ∂ is the fundamental solution of πz ∂z � ω ( ζ, t ) v ( z, t ) = i 1 z ∗ ω = i ζ dA ( ζ ) z − ¯ 2 π ¯ 2 π ¯ Joan Verdera Minimizers. . .

  7. The vorticity equation   ∂ t ω + ( v · ∇ ) ω = 0     v = i 1 1 z ∗ ω = ∇ ⊥ N ∗ ω, N = 2 π log | z |  2 π ¯     ω ( z, 0) = ω 0 ( z ) Particle trajectory : dz ( t ) /dt = v ( z ( t ) , t ) dω ( z ( t ) , t ) = ∂ t ω ( z ( t ) , t ) + ∂ 1 ω ( z ( t ) , t ) v 1 ( z ( t ) , t ) + . . . dt Joan Verdera Minimizers. . .

  8. Yudovich’s Theorem The vorticity equation is well posed in L ∞ : For each ω 0 ∈ L ∞ c ( C ) there is a unique global ”weak” solution to the vorticity equation with initial condition ω 0 . “Proof” : Solve dX ( z, t ) = v ( X ( z, t ) , t ) , X ( z, 0) = z dt and set ω ( z, t ) = ω 0 ( X − 1 ( z, t )) or ω ( X ( z, t ) , t ) = ω 0 ( z ) Joan Verdera Minimizers. . .

  9. Vortex patches ω 0 = χ D , D a domain ω ( z, t ) = χ D ( t ) ( z ) D ( t ) D Joan Verdera Minimizers. . .

  10. The two known explicit examples If D = D (0 , 1) is the unit disc, then D t = D (0 , 1) , 0 < t, χ D (0 , 1) ( z ) is a steady solution to the vorticity equation If D 0 = { ( x, y ) : x 2 /a 2 + y 2 /b 2 < 1 } is an ellipse then ab D t = e i Ω t D 0 , Kirchhoff: 0 < t, Ω = ( a + b ) 2 (vortex) Joan Verdera Minimizers. . .

  11. Why ellipses rotate ? If E = { ( x, y ) : x 2 /a 2 + y 2 /b 2 ≤ 1 } is an ellipse then � 1 � πz ⋆ χ E ( z ) = ¯ z − λz, z ∈ E λ = a − b a + b Joan Verdera Minimizers. . .

  12. The equation of V-states A domain D rotates with angular velocity Ω if and only if � 1 � � 2Ω z − z ⋆ χ D ( z ) ,� τ ( z ) � = 0 , z ∈ ∂D π ¯ If D is an ellipse with semiaxis a and b the equation is � 2Ω z − ( z − λ ¯ z ) ,� τ ( z ) � = 0 , z ∈ ∂D Joan Verdera Minimizers. . .

  13. Rotating vortex patches or V-states Definition A V-state is a vortex patch that rotates with constant angular velocity. If the initial domain D 0 has the origin as center of mass D t = e i Ω t D 0 for a certain angular velocity Ω Deem–Zabuski (1978) : numerical discovery of existence of V-states with m-fold symmetry Burbea (1981) : analytical proof Hmidi-Mateu-V (2015) : A V-state ”close” to the disc has boundary of class C ∞ (and it is convex) Joan Verdera Minimizers. . .

  14. Joan Verdera Minimizers. . .

  15. Classical Potential Theory The Coulomb force field of a charge distribution µ in R 3 � x − y � F ( x ) = −∇ P µ ( x ) = | x − y | 3 dµ ( y ) R 3 The potential energy of a proof charge at x due to µ is � 1 P µ ( x ) = | x − y | dµ ( y ) R 3 The energy of a charge distribution µ �� 1 E ( µ ) = | x − y | dµ ( x ) dµ ( y ) R 3 × R 3 Joan Verdera Minimizers. . .

  16. Classical Potential Theory in the plane � z − w � F ( z ) = −∇ P µ ( z ) = | z − w | 2 dµ ( w ) C � P µ ( z ) = − log | z − w | dµ ( w ) C �� E ( µ ) = − log | z − w | dµ ( z ) dµ ( w ) C × C Books by Carleson and Wermer Joan Verdera Minimizers. . .

  17. Potential Theory in the plane with an external field One considers a confinement force (book by Saff and Totik) � z − w F ( z ) = −∇ P µ ( z ) = − 2¯ � ∂P µ ( z ) = | z − w | 2 dµ ( w ) − z C � � − log | z − w | dµ ( w ) + | z | 2 | w | 2 P µ ( z ) = + dµ ( w ) 2 2 C C �� � | z | 2 dµ ( z ) I ( µ ) = − log | z − w | dµ ( z ) dµ ( w ) + C × C Joan Verdera Minimizers. . .

  18. Potential Theory in the plane with an external field Frostman There exists a unique probability measure that minimises the energy I ( µ ) , namely, the normalised characteristic function of the 1 unit disc D : π χ D ( z ) The minimiser is unique. Then you proceed by a direct calculation or by symmetry plus harmonicity Joan Verdera Minimizers. . .

  19. IDEALISED DISLOCATIONS Straight & parallel; edge Single slip, and single sign (all positive) y INTERACTION STRESS generated by a dislocation at 0 and acting on a dislocation x at z F ( z ) = − κ ∇ V ( z ) V ( z ) = − log | z | + x 2 | z | 2 Conjecture: positive dislocations prefer to form vertical walls. Can we prove it ? Joan Verdera Minimizers. . .

  20. Energy of a dislocation : anisotropy z = x + iy w = u + iv �� � ( − log | z − w | + ( x − u ) 2 � F ( z ) = −∇ P µ ( z ) = ∇ | z − w | 2 ) dµ ( w ) − z C � � � � − log | z − w | + ( x − u ) 2 dµ ( w )+ | z | 2 | w | 2 P µ ( z )= 2 + dµ ( w ) | z − w | 2 2 C C �� � � � − log | z − w | + ( x − u ) 2 | z | 2 dµ ( z ) I ( µ )= dµ ( z ) dµ ( w )+ | z − w | 2 C × C Joan Verdera Minimizers. . .

  21. M. G. Mora, L. Rondi, L. Scardia (2016) It was a long standing conjecture that the unique minimiser of � � �� � − log | z − w | + ( x − u ) 2 | z | 2 dµ ( z ) I ( µ ) = − dµ ( z ) dµ ( w )+ | z − w | 2 C × C was the semicircle law on the vertical axis � µ := δ 0 ⊗ 1 2 − y 2 χ [ − √ √ 2] ( y ) dy 2 , π Joan Verdera Minimizers. . .

  22. The problem Take the interaction potential given by convolution with the kernel W ( z ) = W α ( z ) = − log | z | + α x 2 | z | 2 , − 1 ≤ α ≤ 1 coupled with the confinement term | z | 2 � � �� � − log | z − w | + α ( x − u ) 2 | z | 2 dµ ( z ) I α ( µ )= − dµ ( z ) dµ ( w )+ | z − w | 2 C × C Joan Verdera Minimizers. . .

  23. Carrillo, Mateu, Mora, Rondi, Scardia, V The unique minimiser of the energy I α is the normalized characteristic function of the ellipse centered at the origin with semi-axis √ √ 1 − α and 1 + α 1 0.5 0 -0.5 -1 -1.5 -1 -0.5 0 0.5 1 1.5 Joan Verdera Minimizers. . .

  24. Euler conditions � � � − log | z − w | + α ( x − u ) 2 ( W α ∗ µ )( z ) = dµ ( w ) | z − w | 2 C � P µ ( z ) = ( W α ∗ µ )( z ) + | z | 2 + 1 | w | 2 dµ ( w ) 2 2 C (EL1) P µ ( z ) = C α , Cap a.e. on the support of µ (EL2) P µ ( z ) ≥ C α , off support of µ Joan Verdera Minimizers. . .

  25. Sufficiency of Euler conditions The functional I ( µ ) is strictly convex, because of the positivity of the Fourier transform of W α on test functions ϕ with 0 integral � � (1 − α ) ξ 2 1 + (1 + α ) ξ 2 ( W α )( ξ ) ϕ ( ξ ) dA ( ξ ) = 1 � 2 ϕ ( ξ ) dA ( ξ ) | ξ | 4 2 π � � � ν ( ξ ) | 2 dξ, ( W α ∗ ν ) dν = ( W α )( ξ ) | � ν (1) = 0 Strict convexity implies uniqueness of the minimiser and sufficiency of Euler’s conditions Joan Verdera Minimizers. . .

  26. The candidate ellipse If E is an ellipse then each even smooth homogeneous singular integral applied to χ E is constant on E µ = χ E Then second order derivatives of the potential P µ | E | are constant on E Thus ∇ P µ is a linear function A ( a, b ) z + B ( a, b )¯ z on E Take E centered at the origin and choose the semi-axis so that ∇ P µ = 0 on E : A ( a, b ) = 0 , B ( a, b ) = 0 Hence P µ is constant on E and (EL1) holds a = √ 1 − α b = √ 1 + α Joan Verdera Minimizers. . .

  27. Proof of the second Euler condition - 1 If E is the candidate ellipse, then one has to prove that µ = χ E z ∈ C \ E, P µ ( z ) ≥ C α , | E | It is enough to show that ∇ P µ does not vanish on C \ E This requires a precise computation of ∇ P µ on C \ E � 1 � ∇ P µ ( z ) = − 1 z ∗ µ + α z ∗ µ − z z 2 ∗ µ + z ¯ 2 ¯ Joan Verdera Minimizers. . .

  28. Proof of the second Euler condition - 2 Let E be an ellipse with semiaxis a and b . Then  � 1 �  z − λ ¯ z, z ∈ E z ∗ χ E ( z ) = π ¯  2 ab h (¯ z ) , z / ∈ E 1 λ = a − b c 2 = b 2 − a 2 √ h ( z ) = z 2 + c 2 a + b z + Joan Verdera Minimizers. . .

  29. z 2 = 1 z z ∗ 1 1 z 2 ¯ ¯ π ¯ Conjugate Beurling = primitive in z and then − ¯ ∂ � 1 � 1 1 1 z 2 = − ¯ ∂ π ¯ π z ¯ Joan Verdera Minimizers. . .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend