heuristic parameter choice in tikhonov method from
play

Heuristic parameter choice in Tikhonov method from minimizers of the - PowerPoint PPT Presentation

Heuristic parameter choice in Tikhonov method from minimizers of the quasi-optimality function Toomas Raus and Uno H amarik University of Tartu, Estonia 31.10.2017, Rio de Janeiro U. H amarik (Tartu) Heuristic parameter choice


  1. Heuristic parameter choice in Tikhonov method from minimizers of the quasi-optimality function Toomas Raus and Uno H¨ amarik University of Tartu, Estonia 31.10.2017, Rio de Janeiro U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 1 / 21

  2. Contents 1 Problem 2 Rules for the choice of the regularization parameter 3 Local minimum points of the function ψ Q ( α ) 4 Restricted set L ∗ min of the local minimizers of ψ Q ( α ) 5 Choice of α from the set L ∗ min U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 2 / 21

  3. Problem A ∈ L ( H , F ) , f ∗ ∈ R ( A ) , Au = f ∗ , (1) f ∗ , f - exact and noisy data. Range R ( A ) non-closed, kernel N ( A ) non-trivial. Tikhonov method, using f ∗ , f : α = ( α I + A ∗ A ) − 1 A ∗ f ∗ , u α = ( α I + A ∗ A ) − 1 A ∗ f u + Problem: how to choose the regularization parameter α > 0? Denote � + � . � u + � u α − u + � � � � e 1 ( α ) := α − u ∗ (2) α The aim: find rule R, choosing the parameter α R with the property (’pseudooptimality’ property) � u α R − u ∗ � ≤ const min α> 0 e 1 ( α ) U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 3 / 21

  4. Quasioptimality criterion Quasioptimality criterion: α Q := argmin α> 0 ψ Q ( α ), where � = α − 1 � A ∗ ( Au 2 ,α − f ) � , � du α � � ψ Q ( α ) := α d α u 2 ,α = ( α I + A ∗ A ) − 1 ( α u α + A ∗ f ). We search the regularization parameter from the set Ω = { α j : α j = q α j − 1 , j = 1 , 2 , ..., M , 0 < q < 1 } , where α 0 , M , q are given. We show that at least one of local minimizers from the set Ω is psudooptimal and we show how to find it. U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 4 / 21

  5. Rules for the choice of α , if δ ≥ � f − f ∗ � is known 1) Discrepancy principle : b 1 δ ≤ � Au α − f � ≤ b 2 δ, b 1 ≥ 1 . 2) Modified discrepancy principle : ( Au α − f , Au 2 ,α − f ) 1 / 2 = δ, u 2 ,α = ( α I + A ∗ A ) − 1 ( α u α + A ∗ f ) . 3) Monotone error rule (ME-rule) ( Au α − f , Au 2 ,α − f ) = δ � Au 2 ,α − f � gives α ME ≥ α opt := argmin � u α − u ∗ � . We recommend α MEe := 0 . 4 α ME ; typically � u α MEe − u ∗ � / � u α ME − u ∗ � ∈ (0 . 7 , 0 . 9) . U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 5 / 21

  6. Rules for the choice of α , if δ ≥ � f − f ∗ � is unknown 1) The quasi-optimality criterion: α = α Q is the global minimizer of the function � � du α � = α − 1 � A ∗ ( Au 2 ,α − f ) � . � � ψ Q ( α ) = α (3) � � d α � 2) The Hanke-Raus rule: α = α HR is the global minimizer of the function ψ HR ( α ) = α − 1 / 2 ( A α − f , Au 2 ,α − f ) 1 / 2 . 3) L-curve rule: on graph with log-log scale, on x -axis � Au α − f � and on y -axis � u α � the corner point is used. 4) Reginska’s rule: global minimum point of the function ψ RE ( α ) = � Au α − f � � u α � τ , τ ≥ 1 . 5) HME-rule: α = α HME is chosen as the global minimizer of the function ψ HME ( α ) = α − 1 / 2 ( Au α − f , Au 2 ,α − f ) . � Au 2 ,α − f � U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 6 / 21

  7. Parameters set, regularization need We use the set of parameters Ω = { α j : α j = q α j − 1 , j = 1 , 2 , ..., M , 0 < q < 1 } , (4) where α 0 , q , α M are given. We search local minimizer of ψ Q ( α ) in the interval [max ( α M , λ min ) , α 0 ], where λ min is the minimal eigenvalue of the matrix A T A of the discretized problem. We say that the discretized problem Au = f do not need regularization if e 1 ( λ min ) = α ∈ Ω ,α ≥ λ min e 1 ( α ) . min If λ min > α M and the discretized problem do not need regularization then α M is the proper parameter while then it is easy to show the error estimate � u α M − u ∗ � ≤ e 1 ( α M ) ≤ 2 min α ∈ Ω e 1 ( α ) . Searching the parameter from the interval [max ( α M , λ min ) , α 0 ] means the a priori assumption that the discretized problem needs regularization. U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 7 / 21

  8. Test problems Hansen’s 10 test problems: Baart, Deriv2,Foxgood,Gravity,Heat,Ilaplace, Phillips,Shaw,Spikes,Wing. The problems are scaled in such a way that the 2-norms of A and f are 1. The dicretization number n = 100. Relative noise levels: δ rel := � f − f ∗ � / � f ∗ � = 10 − j , j = 1 , 2 , ..., 6 . Noisy right-hand side: f = f ∗ + δ rel � f ∗ � � ξ � − 1 ξ , where components ξ i have standard normal distribution. For each noise level we considered 20 runs. Sequence of the parameters: α 0 = 1 , α M = 10 − 18 , q = 0 . 95. case p = 0. Original problems. case p = 2. Problems, where the exact solution u ∗ is replaced by A T Au ∗ . Let λ min be the minimal eigenvalue of the matrix A T A . Tables below show for different rules R the error ratios E = � u α R − u ∗ � � u α R − u ∗ � � u α ∗ − u ∗ � = min α ∈ Ω � u α − u ∗ � . U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 8 / 21

  9. Comparison of heuristic rules Table: Averages of error ratios E and failure % (in parenthesis) for heuristic rules, p = 0 Problem Λ Quasiopt. HR HME Reginska Baart 1666 1.54 2.58 2.52 1.32 Deriv2 16 1.08 2.07 1.72 35.19 (3.3) Foxgood 210 1.57 8.36 7.71 36.94 (10.8) Gravity 4 1.13 2.66 2.32 20.49 (0.8) 4 ∗ 10 29 Heat > 100 (66.7) 1.64 1.48 23.40 (4.2) Ilaplace 16 1.24 1.94 1.81 1.66 Phillips 9 1.09 2.27 1.91 > 100 (44.2) Shaw 290 1.43 2.34 2.23 1.80 Spikes 1529 1.01 1.03 1.03 1.01 Wing 9219 1.40 1.51 1.51 1.18 Λ = max λ k > max ( α M ,λ n ) λ k /λ k +1 of consecutive eigenvalues λ 1 ≥ λ 2 ≥ ... ≥ λ n of the matrix A T A in the interval [max ( α M , λ n ) , 1]. U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 9 / 21

  10. Local minimum points of the function ψ Q ( α ) Lemma 1 The function ψ Q ( α ) has the estimate (see (2) for notation e 1 ( α ) ) � u + � + � u α − u + � . � � � � ψ Q ( α ) ≤ e 1 ( α ) = α − u ∗ (5) α Remark 1 Note that lim α →∞ ψ Q ( α ) = 0 , but lim α →∞ e 1 ( α ) = � u ∗ � . Therefore in the case of too large α 0 this α 0 may be global (or local) minimizer of the function ψ Q ( α ) . We recommend to take α 0 = c � A ∗ A � , c ≤ 1 or to minimize the function ˜ ψ Q ( α ) := (1 + α/ � A ∗ A � ) ψ Q ( α ) instead of ψ Q ( α ) . Lemma 2 Denote ψ QD ( α ) = (1 − q ) − 1 � u α − u q α � . Then it holds ψ Q ( α ) ≤ ψ QD ( α ) ≤ q − 1 ψ Q ( q α ) . U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 10 / 21

  11. Parameter α k , 0 ≤ k ≤ M − 1 is the local minimum point of the sequence ψ Q ( α k ), if ψ Q ( α k ) < ψ Q ( α k +1 ) and in case k > 0 there exists index j ≥ 1 such, that ψ Q ( α k ) = ψ Q ( α k − 1 ) = ... = ψ Q ( α k − j +1 ) < ψ Q ( α k − j ) . Parameter α M is the local minimum point if there ∃ j ≥ 1 so, that ψ Q ( α M ) = ψ Q ( α M − 1 ) = ... = ψ Q ( α M − j +1 ) < ψ Q ( α M − j ) . Denote the set of local minimum points: � � α ( k ) min : α (1) min > α (2) min > ... > α ( K ) L min = . min Parameter α k is the local maximum point of the sequence ψ Q ( α k ) if ψ Q ( α k ) > ψ Q ( α k +1 ) and there exists index j ≥ 1 so, that ψ Q ( α k ) = ψ Q ( α k − 1 ) = ... = ψ Q ( α k − j +1 ) > ψ Q ( α k − j ) . We denote by α ( k ) max the local maximum point between the local minimum points α ( k +1) and α ( k ) min , 1 ≤ k ≤ K − 1. Denote α (0) max = α 0 , α ( K ) max = α M . min Then by the construction α (0) max ≥ α (1) min > α (1) max > ... > α ( K − 1) > α ( K ) min ≥ α ( K ) max . max U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 11 / 21

  12. Theorem 3 Local minimum points of the function ψ Q ( α ) have estimates: 1 α ∈ L min � u α − u ∗ � ≤ q − 1 C min α M ≤ α ≤ α 0 e 1 ( α ) , min where � α 0 � � � α ( k ) C := 1 + max max T min , α j ≤ 1 + c q ln , α M 1 ≤ k ≤ K α j ∈ Ω ,α ( k ) max ≤ α j ≤ α ( k − 1) max T ( α, β ) := � u α − u β � q − 1 − 1 / ln q − 1 → 1 if q → 1 . � � , c q := ψ Q ( β ) 2 Let u ∗ = ( A ∗ A ) p / 2 v, � v � ≤ ρ , 0 < p ≤ 2 and α 0 = 1 . If δ 0 := √ α M ≤ � f − f ∗ � , then α ∈ L min � u α − u ∗ � ≤ c p ln � f − f ∗ � 1 p p +1 | ln � f − f ∗ �| � f − f ∗ � p +1 . min ρ δ 0 U. H¨ amarik (Tartu) Heuristic parameter choice 31.10.2017, Rio de Janeiro 12 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend