mimo fundamentals and signal processing course
play

MIMO Fundamentals and Signal Processing Course Erik G. Larsson Link - PowerPoint PPT Presentation

MIMO Fundamentals and Signal Processing Course Erik G. Larsson Link oping University (LiU), Sweden Dept. of Electrical Engineering (ISY) Division of Communication Systems www.commsys.isy.liu.se slides version: September 25, 2009 Link


  1. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Waterfilling at high SNR N 0 λ 2 k ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ������������� ������������� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ������������� ������������� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ������������� ������������� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ������������� ������������� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ������������� ������������� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� P ∗ k ≈ P ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� n ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ... n k 1 2 3 15

  2. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Waterfilling at low SNR ➮ At low SNR, the water is shallow. Then � k = argmax λ 2 P, P ∗ k k = 0 , else � P � � � 1 + P λ 2 λ 2 ≈ · log 2 ( e ) C = log 2 max max N 0 N 0 ➮ MIMO provides an array gain (power gain of λ 2 max ) but no DoF gains. ➮ Channel rank does not matter, only power matters. ➮ Transmit one beam in the direction associated with largest λ k ➮ Knowing H is very important! (to select what beam to use) 16

  3. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Waterfilling at low SNR N 0 λ 2 k 4 = P P ∗ µ ... n k 1 2 3 17

  4. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing In practice ➮ Feedback of channel state information, requires quantization ➮ Potentially, by scheduling only “good” users, one may always operate at high SNR ➮ Selection of modulation scheme — e.g., M -QAM per subchannel, different M — better channel, larger constellation — should be done with outer code in mind ➮ Imperfect CSI ➠ cross-talk! 18

  5. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing MIMO channel models ➮ MIMO channel modeling is a rich research field, with both empirical (measurement) work and theoretical models. ➮ We will explore the main underlying physical phenomena of MIMO propagation and how they connect to the DoF concept. 19

  6. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Line-of-sight SIMO channel ➮ Consider m -ULA at TX and RX, wavelength λ = c/f c , ant. spacing ∆ ∆ RX array φ TX   1 e − j 2 π λ ∆ cos φ     ➮ Let u ( φ ) � . .   .   e − j ( m − 1) 2 π λ ∆ cos φ ➮ Signal from point source impinging on RX array (large TX-RX distance): 20 y = α u ( φ ) · s + e , ( α ∈ C , dep. on distance )

  7. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Line-of-sight MIMO channel φ r RX array φ t TX array H ➮ MIMO channel: y = α · u ( φ r ) · · x + e , u ( φ t ) n = rank( H ) = 1 � �� � � �� � n r × 1 n t × 1 � �� � H ➮ The LoS-MIMO channel has rank one, so no DoF gain! 21

  8. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Lobes and resolvability ➮ Consider unit-power point sources at φ 1 , φ 2 with sign. u ( φ 1 ) , u ( φ 2 ) . How similar do these signatures look?   1 1 s 2 · 1 m � s 1 u ( φ 1 ) − s 2 u ( φ 2 ) � 2 = 2 − 2 Re    s ∗ m u H ( φ 1 ) u ( φ 2 )    � �� � |·| = f ( · ) where the lobe pattern f (cos( φ 1 ) − cos( φ 2 )) � 1 m | u H ( φ 1 ) u ( φ 2 ) | . ➮ If f ( · ) < 1 , then φ 1 , φ 2 resolvable. ➮ Resolvability criterion: | cos φ 1 − cos φ 2 | ≥ 2 π A � ( m − 1)∆ A , ➮ Grating lobes avoided if ∆ ≤ λ 2 ⇒ A ≤ ( m − 1) λ 2 . 22

  9. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Two separated point sources and an m -receive-array TX2 φ 1 φ 2 RX array TX1 ➮ Define H = [ h 1 h 2 ] , h i = α i u ( φ i ) � ➮ Condition number κ ( H ) = λ max ( H ) 1 + f (cos( φ 1 ) − cos( φ 2 )) λ min ( H ) = 1 − f (cos( φ 1 ) − cos( φ 2 )) ➮ κ ( H ) is small if f ( · · · ) � = 1 ⇔ φ 1 , φ 2 resolvable ⇔ | cos φ 1 − cos φ 2 | > 2 π A 23

  10. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing MIMO with two plane scatters A RX array B TX array ➮ Here, H TX-RX = H AB-RX · H TX-AB ➮ We have rank ( H TX-RX ) = 2 only if rank ( H AB-RX ) = 2 and rank ( H TX-AB ) = 2 ➮ For H to offer 2 DoF, A and B must be sufficiently separated in angle, 24 as seen both from TX and RX

  11. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Angular decomposition of MIMO channel ➮ For φ 1 , φ 2 , ..., φ m define 1 U � √ m [ u ( φ 1 ) · · · u ( φ m )] ➮ Can show: With cos( φ k ) = k/m , { u ( φ k ) } forms ON-basis. Then U H U = I . ➮ Let U r and U t be the U matrices associated with the TX and RX arrays. Note that U H r U r = I and U H t U t = I ➮ If ∆ = λ/ 2 , then u ( φ i ) correspond to simple, perfectly resolvable beams, with a single mainlobe. ➮ We assume ∆ = λ/ 2 from now on. The case of ∆ � = λ/ 2 is more involved. 25

  12. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Angular decomposition, cont. 5 4 5 3 4 2 3 RX 1 2 1 26 TX

  13. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Angular decomposition, cont. ➮ Now define H a � U H r HU t ⇒ H a, ( k,l ) = u H ( φ r k ) Hu ( φ t l ) �� � u H ( φ r α i u ( φ ′ r i ) u H ( φ ′ t u ( φ t k ) i ) l ) i � �� � physical model     �   u H ( φ r k ) u ( φ ′ r u H ( φ ′ t i ) u ( φ t    · = α i i ) l )      � �� � � �� � i =0 unless φ ′ r i falls in lobe φ r =0 unless φ ′ t i falls in lobe φ t k l ➮ Elements of H a correspond to different propagation paths ➮ H a, ( k,l ) =gain of ray going out in TX lobe l and arriving in RX lobe k 27

  14. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Angular decomposition, key points ➮ “Rich scattering” if all angular bins filled ( H a has “no zeros”) ➮ “Diversity order” = measure of error resilience = number of propagation paths = number of nonzero elements in H a ➮ Number of DoF = rank( H ) = rank( H a ) ➮ If H a, ( k,l ) are i.i.d. then H k,l are i.i.d. ➮ With i.i.d. H a and many terms in � , then we get i.i.d. Rayleigh fading. 28

  15. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Fast fading, no CSI at TX ➮ Each codeword spans ∞ number of H ➮ The V-BLAST architecture is optimal here Note: Reminiscent of architecture for slow fading and full CSI@TX ➮ Transmit vectors x = Q ˜ x where ˜ x 1 , ..., ˜ x n are independent streams with powers P k and rates R k 29

  16. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing V-BLAST architecture e 1 x 1 y 1 x 1 ˜ x 2 x 2 ˜ y 2 optimal Q H receiver e n r x n t y n r x n ˜ 30

  17. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing   P 1 0 · · · 0 . ... . 0 P 2 .    Q H ➮ Transmit covariance: K x � cov ( x ) = Q   . ... ... . . 0  · · · 0 0 P n ➮ Achievable rate, for fixed H : � � � I + 1 � � HK x H H R = log 2 � � N 0 � ➮ Intuition: Volume of noise ball is | N 0 I | N . Volume of signal ball is | HK x H H + N o I | N . 31

  18. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing ➮ Fast fading, coding over ∞ number of H matrices gives ergodic capacity � � � � � I + 1 � � HK x H H C = E log 2 � � N 0 � ➮ Choose Q and P k to � � � � � I + 1 � � HK x H H max E log 2 � � N 0 � K x , Tr ( K x ) ≤ P ➮ Optimal K x depends on the statistics of H 32

  19. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing ➮ In i.i.d. Rayleigh fading, K ∗ x = P n t I (i.i.d. streams) and � � � � n � � �� � I + P 1 1 + SNR � � � HH H λ 2 C = E log 2 = E log 2 � � k N 0 n t n t � k =1 where n = rank ( H ) = min( n r , n t ) SNR � P N 0 { λ k } are the singular values of H ➠ Antennas then transmit separate streams. ➠ Coding across antennas is unimportant. 33

  20. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Some special cases ➮ SISO: n t = n r = 1 � � log 2 (1 + SNR | h | 2 ) C = E At high SNR, the loss is -0.83 bpcu relative to AWGN channel ➮ SIMO: n t = 1 (power gain relative to SISO) � � �� n r � | h k | 2 C = E log 2 1 + SNR k =1 ➮ MISO: n r = 1 (no power gain relative to SISO) � � �� n t 1 + SNR � | h k | 2 C = E log 2 n t k =1 34

  21. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Large arrays (infinite apertures) ➮ Large MISO ( n t TX, 1 RX) becomes AWGN channel: � � �� n t 1 + SNR � | h k | 2 → log 2 (1 + SNR ) C = E log 2 n t k =1 ➮ Large SIMO (1 TX, n r RX) � � �� n r � | h k | 2 C = E log 2 1 + SNR ≈ log 2 ( n r SNR ) = log 2 ( n r )+log 2 ( SNR ) k =1 ➮ Large square MIMO ( n t TX, n r RX, n r = n t = n ): Linear incr. with n : � � � � � � 4 1 1 t − 1 C ≈ n · log 2 (1 + t · SNR ) dt 35 π 4 0

  22. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Fast fading, no CSI at TX, high SNR ➮ Here n � � �� 1 + SNR � λ 2 C = E log 2 ≈ n log 2 ( SNR ) + const k n t k =1 ➮ Both n r and n t must be large to provide DoF gain ➮ “Capacity grows as min ( n r , n t ) ” 36

  23. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Fast fading, no CSI at TX, low SNR ➮ Here n n � � �� 1 + SNR ≈ log 2 ( e ) · SNR � � λ 2 E [ λ 2 C = E log 2 · k ] k n t n t k =1 k =1 = log 2 ( e ) · SNR · E [ || H || 2 ] = log 2 ( e ) · n r · SNR n t � �� � = n r n t ➮ Capacity independent of n t ! ➮ No DoF gain. All what matters here is power ➮ Relative to SISO, a power gain of n r (array/beamforming gain) ➮ Multiple TX antennas do not help here 37 (but with CSI at TX, things are very different)

  24. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing V-BLAST in practice ➮ Transmitter architecture “simple” but the receiver must separate the streams ➠ major challenge ➮ Problems are conceptually similar to uplink MUD in CDMA and to equalization for ISI channels ➮ Stream-by-stream receivers: Successive-interference-cancellation ➠ MMSE-SIC is theoretically optimal but suffers from error propagation ➠ Rate allocation necessary ➮ Iterative architectures ➠ Iteration between outer code and demodulator ➠ Demodulator design is major problem 38 ➮ Receivers for MIMO to be discussed more in lecture 3

  25. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Fast fading, full CSI at TX ➮ The transmitter can do waterfilling over both space and time ➮ Parallel channels: ˜ y k [ m ] = λ k [ m ]˜ x k [ m ] + ˜ e k [ m ] ➠ Waterfilling over space ( k ) and time ( m ). ➠ Optimal powers P ∗ k [ m ] ➠ Capacity n � � �� 1 + P ∗ ( λ k ) λ 2 � k C = E log 2 N 0 k =1 39

  26. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing ➮ High SNR: P ∗ ( λ k ) ≈ P n (equal power) n � � �� 1 + SNR � n λ 2 C ≈ E log 2 , n D.o.F. k k =1 An SNR gain (compared to no CSI) of n t min( n t , n r ) = n t n t if n t ≥ n r n = , n r ➮ Low SNR: Even larger gain, so here multiple antennas do help! 40

  27. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Slow fading, no CSI at TX � N 0 HK x H H � � 1 � ➮ Reliable communication for fixed H if log 2 � I + � > R � N 0 HK x H H � � � � 1 � ➮ Outage probability, for fixed R : P out = P log 2 � I + � < R ➮ Optimal K x as function of H ’s statistics: � � � � � I + 1 � � K ∗ HK x H H x = argmin P log 2 � < R � � N 0 K x , Tr K x ≤ P For H i.i.d. Rayleigh fading: ➠ K ∗ x = P n t I optimal at large SNR n ′ diag { 1 , ..., 1 , 0 , ..., 0 } at low SNR ( n ′ < n t ) ➠ K ∗ x = P 41

  28. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing ➮ Notion of diversity : P out behaves as SNR − d where d =diversity order ➮ Maximal diversity: d = n r n t ➮ To achieve diversity, we need coding across streams ➮ V-BLAST does not work here. Each stream has diversity at most n r , while the channel offers n r n t ➮ Architectures for slow fading: ➠ Theoretically, D-BLAST is optimal ➠ Pragmatic approaches include STBC combined with FEC 42

  29. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Example: Outage probability at rate R = 2 bpcu n t =1, n r =1 (SISO) n t =2, n r =1 n t =1, n r =2 −1 10 n t =2, n r =2 −2 10 FER −3 10 −4 10 −5 0 5 10 15 20 25 30 35 40 43 SNR

  30. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing D-BLAST architecture epl x B (1) x B (2) x A (1) x A (2) x A (3) ➮ Decoding in steps: 1. Decode x A (1) 2. Decode x B (1) , suppressing x A (2) via MMSE 3. Strip off x B (1) , and decode x A (2) 4. Decode x B (2) , suppressing x A (3) via MMSE ➮ One codeword: x ( i ) = [ x A ( i ) x B ( i )] ➮ Requires appropriate rate allocation among x A ( i ) , x B ( i ) ➮ In practice, error propagation and rate loss due to initialization 44

  31. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Le 2: Low-complexity MIMO 45

  32. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Antenna diversity basics ➮ Recall transmission model (single time interval):         y 1 h 1 , 1 · · · h 1 ,n t x 1 e 1 . . . . . . . . . . . . . . .         = + y n r h n r , 1 · · · h n r ,n t x n t e n r � �� � � �� � � �� � � �� � y (RX data) H (channel) x (TX data) e (noise) ➮ Transmission model ( N time intervals): � y 1 , 1 � h 1 , 1 � x 1 , 1 � e 1 , 1 � � � � · · · x 1 ,N · · · y 1 ,N · · · h 1 ,nt · · · e 1 ,N . . . . . . . . = + . . . . . . . . . . . . . . . . xnt, 1 · · · xnt,N ynr, 1 · · · ynr,N hnr, 1 · · · hnr,nt enr, 1 · · · enr,N � �� � � �� � � �� � � �� � Y H E X ∈X “code matrix” 46

  33. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Introduction and preliminaries ➮ Transmitting with low error probability at fixed rate requires N large. ➮ For practical systems, it is often of interest to design short space-time blocks (small N ) with good error probability performance. Outer FEC can then be used over these blocks. ➮ Throughout, we will assume Gaussian noise, e ∼ N (0 , N 0 I ) Usually, we assume i.i.d. Rayleigh fading, H i,j i.i.d. N (0 , 1) Sometimes, for SIMO/MISO, we take h ∼ N ( 0 , Q ) 47

  34. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Receive diversity ( n t = 1 ) ➮ Suppose s transmitted, and h known at RX. ➮ Receive: y = h s + e ➮ Detection of s via maximum-likelihood (in AWGN): s � h H y � � 2 � y − h s � 2 = ... = � h � 2 · � � � s − ˆ s + const. , where ˆ � � h � 2 ➮ MRC+scalar detection problem! ➮ Distribution of ˆ s determines performance: � � s � h H y SNR | h = � h � 2 s, N 0 = � h � 2 · P � | s | 2 � � h � 2 ∼ N · E ˆ , � h � 2 N 0 N 0 � �� � ���� = P SNR 48

  35. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Diversity order ( n × 1 fading vector h ) �� � SNR · � h � 2 ➮ P ( e | h ) = Q and h ∼ N ( 0 , Q ) (SNR up to a constant) � � n − 1 � � − 1 � I + SNR 1 + SNR � � � ➮ Then P ( e ) = E [ P ( e | h )] ≤ 2 Q = 2 λ k ( Q ) � � � k =1 � SNR � − rank( Q ) 1 ➮ As SNR → ∞ , P ( e ) ≤ · � rank( Q ) 2 λ k ( Q ) k =1 ➮ Diversity order d � − log P ( e ) log SNR = rank( Q ) � n � 1 /n n ≤ 1 λ k = 1 n Tr { Q } = 1 � � nE [ � h � 2 ] ➮ Note that λ k n k =1 k =1 49 with eq. if λ 1 = · · · = λ n so Q ∝ I minimizes the bound on P ( e )

  36. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Diversity order P ( e ) d = 1 10 − 1 d = 2 d = 3 10 − 2 10 − 3 10 − 4 10 − 5 0 10 20 30 40 50 SNR 50

  37. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Transmit diversity, H known at transmitter ➮ Try transmit w · s where w is function of H ! (as we did in Le 1) ➮ RX data is y = Hw s + e and optimal decision minimizes the ML metric: � y − Hw s � 2 = ... = � Hw � 2 · | s − ˆ s | 2 + const. s � w H H H y � � N 0 � Hw � 2 ∼ N where ˆ s, � Hw � 2 ➮ The SNR | H in ˆ s is max for w =normalized dominant RSV of H � H � 2 � | s | 2 � � | s | 2 � N 0 λ max ( H H H ) 1 1 ➮ Resulting SNR | H = · E ≥ · E . N 0 n t � �� � ≥� H � 2 /n t ➮ Diversity order: d = n r n t � h � so SNR | h = � h � 2 � | s | 2 � h ∗ 51 ➮ For n r = 1 take w opt = N 0 E (same as for RX-d)

  38. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Transmit diversity, H unknown at transmitter ➮ From now on, TX does not know H ! ➮ Consider Y = HX + E . Optimal receiver in AWGN ( H known at RX): X � Y − HX � 2 X P ( X | Y , H ) ⇔ min max �� � � H ( X 0 − X ) � 2 ➮ Pairwise error probability P ( X 0 → X | H ) = Q 2 N 0 ➮ Consider P ( X 0 → X ) = E [ P ( X 0 → X | H )] . For i.i.d. Rayleigh fading, � ( X 0 − X )( X 0 − X ) H � 1 − n r � � P ( X 0 → X ) ≤ � I + � 4 N 0 � �� � ” − d − d “ 1 ∼ SNR ∼ N 0 d =“diversity order”. Note: d ≤ n r n t and d = n r n t if X 0 − X full rank 52

  39. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Linear space-time block codes (STBC) ➮ STBC maps n s complex symbols onto n t × N matrix X : { s 1 , . . . , s n s } → X ➮ Linear STBC: n s � X = (¯ s n A n + i ˜ s n B n ) n =1 where { A n , B n } are fixed matrices ➮ Typically N small. Need N ≥ n t for max diversity (why?) ➮ Rate: R � N bits/channel use n s 53

  40. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing STBC with a single symbol ➮ Transmit one symbol s during N time intervals, weighted by W : X = W · s, Y = HX + E = HW s + E ➮ Average error probability in Rayleigh fading: � 1 � − n r n t P ( s 0 → s ) ≤ | W W H | − n r | s − s 0 | − 2 n r n t 4 N 0 ➮ What is the optimum W ? Try to maximize: | W W H | max W = � W � 2 ≤ 1 � W W H � s.t. Tr (power constraint) ➮ Solution: W W H = 1 n t I , (antenna cycling). Diversity but rate 1 /N ! 54

  41. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Alamouti scheme for n t = 2 Time 1 Time 2 � � √ √ s ∗ s 1 1 2 s ∗ ➮ X = . That is: Ant 1 s 1 / 2 2 / 2 √ − s ∗ √ √ s 2 2 1 − s ∗ Ant 2 s 2 2 1 / 2 � y 1 � � h 1 s 1 + h 2 s 2 � � e 1 � 1 ➮ RX data: = + √ h 1 s ∗ 2 − h 2 s ∗ y 2 e 2 2 1 � � � � � � � � � � � � h 1 s 1 + h 2 s 2 s 1 y 1 e 1 h 1 h 2 e 1 1 1 ➮ Consider = + = + √ √ h ∗ 1 s 2 − h ∗ − h ∗ h ∗ y ∗ e ∗ e ∗ 2 s 1 s 2 2 2 2 2 2 1 2 ➮ ML detector � � 2 � � � � � � � � � � � � − 1 s 1 y 1 h 1 h 2 � � √ min − h ∗ h ∗ y ∗ � � s 2 s 1 ,s 2 2 � 2 2 1 � � �� � � �� � ���� � � y s � � � G 55

  42. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing � � � � h H − h T h 1 h 2 = � h 1 � 2 + � h 2 � 2 ➮ Observation: G H G = 1 1 2 I − h ∗ h ∗ h H h T 2 2 2 1 2 1 G H y ➮ Hence min � y − Gs � 2 ⇔ min � ˆ s − s � 2 , ˆ s = 2 � h 1 � 2 + � h 2 � 2 ➮ Distribution of ˆ s : � � � h 1 � 2 + � h 2 � 2 = 2 G H ( Gs + e ) G H y s , 2 N 0 ˆ s = 2 � h 1 � 2 + � h 2 � 2 ∼ N � H � 2 I ➮ SNR | H = � H � 2 For 2 × 1 system, 3 dB less than 1 × 2 with MRC . 2 N 0 ➮ Diversity order: 2 n r 56

  43. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Overview of 2-antenna systems Method SNR rate TX knows h 1 , h 2 | h 1 | 2 + | h 2 | 2 1 TX, 2 RX, MRC 1 no N 0 | h 1 | 2 + | h 2 | 2 2 TX, 1 RX, BF 1 yes N 0 | h 1 | 2 + | h 2 | 2 2 TX, 1 RX, ant. cycl. 1/2 no 2 N 0 | h 1 | 2 + | h 2 | 2 2 TX, 1 RX, Alamouti 1 no 2 N 0 ≥ | h 1 | 2 + | h 2 | 2 2 TX, 1 RX, Ant. sel. 1 partly 2 N 0 ➮ For antenna selection, note that | h 1 | 2 + | h 2 | 2 max | h n | 2 ≥ 1 N 0 2 N 0 57

  44. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing 2-antenna systems, cont P ( e ) 1 RX, 1 TX 10 − 1 1 RX, 2 TX, Alamouti 1 RX, 2 TX, antenna selection 10 − 2 2 RX, 1 TX, MRC or 1 TX, 2 RX, BF 10 − 3 10 − 4 10 − 5 0 10 20 30 40 50 58 SNR

  45. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Orthogonal STBC (OSTBC) ➮ Important special case of linear STBC: n s n s � � | s n | 2 · I = � s � 2 · I XX H = X = (¯ s n A n + i ˜ s n B n ) for which n =1 n =1 Notation: ¯ ( · ) =real part, ˜ ( · ) =imaginary part ➮ This is equivalent to requiring for n = 1 , . . . , n s , p = 1 , . . . , n s A n A H n = I , B n B H n = I A n A H p = − A p A H B n B H p = − B p B H n , n , n � = p A n B H p = B p A H n 59

  46. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Proof ➮ To prove ⇒ ), expand: n s n s � � XX H = s p B p ) H (¯ s n A n + i ˜ s n B n )(¯ s p A p + i ˜ n =1 p =1 n s � s 2 n A n A H s 2 n B n B H = (¯ n + ˜ n ) n =1 n s n s � � � � s p ( A n A H p + A p A H s p ( B n B H p + B p B H + s n ¯ ¯ n ) + ˜ s n ˜ n ) n =1 p =1 ,p>n n s n s � � s p ( B n A H p − A p B H + i s n ¯ ˜ n ) n =1 p =1 ➮ Proof of ⇐ ), see e.g., EL&PS book. 60

  47. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Some properties of OSTBC ➮ Manifests the intuition that unitary matrices are good √ ➮ Alamouti code is an OSTBC (up to 1 / 2 normalization) ➮ Pros ➠ Diversity of order n r n t ➠ Detection of { s n } is decoupled ➠ Converts space-time channel into n s AWGN channels ➠ Combination with outer coding is straightforward ➮ Cons ➠ Rate loss for n t > 2 , i.e., n t > 2 ⇒ R = n s N < 1 ➠ Information loss except for when n t = 2 , n r = 1 61

  48. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Diversity order of OSTBC n } n s ➮ Suppose { s 0 n =1 are true symbols and { s n } are any other symbols. Then n s � � � s 0 s 0 X − X 0 = (¯ s n − ¯ n ) A n + i (˜ s n − ˜ n ) B n n =1 n s � ( X − X 0 )( X − X 0 ) H = n | 2 · I | s n − s 0 ⇒ n =1 ➮ Full rank ➠ full diversity for i.i.d. Gaussian channel 62

  49. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Derivation of decoupled detection ➮ Write the ML metric as � Y − HX � 2 = � Y � 2 − 2 ReTr � � Y H HX + � HX � 2 n s n s � � = � Y � 2 − 2 � � � � Y H HA n Y H HB n ReTr s n + 2 ¯ Im Tr s n ˜ n =1 n =1 + � H � 2 · � s � 2 n s � s n + | s n | 2 � H � 2 � � � � � � Y H HA n Y H HB n − 2 ReTr = s n + 2 Im Tr ¯ ˜ n =1 + const. � � 2 � � � � n s Y H HA n Y H HB n − i Im Tr � s n − ReTr � � � = � H � 2 · � � + const. � � � H � 2 63 � n =1

  50. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Decoupled detection, again s ′ � [¯ y = F s ′ + e , s T ] T s T ➮ Linearity: Y = HX + E ⇔ ˜ ➮ Theorem: X is an OSTBC if and only if = � H � 2 · I � � F H F ∀ Re H ➮ ML metric: � y − F s ′ � 2 = � y � 2 − 2 Re � y H F s ′ � � s ′ T F H F s ′ � + Re = � y � 2 − 2 Re + � H � 2 · � s ′ � 2 � y H F s ′ � = � H � 2 · � s ′ − ˆ s ′ � 2 + const. �� � � � � ˆ � � F H y = Re ¯ , N 0 / 2 s s ¯ s ′ � ∼ N where ˆ � H � 2 I ˆ s ˜ ˜ � H � 2 s 64 ➮ F is a “Spatial/temporal (code) matched filter”

  51. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Interpretation of decoupled detection ➮ Space-time channel decouples into n s AWGN channels AWGN signal 1 AWGN signal 2 AWGN signal ns (a) n t × n r space-time channel (b) n s independent AWGN channels · � H � 2 ➮ SNR per subchannel: SNR | H = N · P 65 n s n t N 0

  52. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Example: Alamouti’s code is an OSTBC ➮ Consider the Alamouti code (re-normalized): � � s ∗ s 1 XX H = ( | s 1 | 2 + | s 2 | 2 ) I 2 X = , − s ∗ s 2 1 ➮ Identification of A n and B n gives � � � � 1 0 0 1 A 1 = A 2 = 0 − 1 1 0 � � � � 1 0 0 − 1 B 1 = B 2 = 0 1 1 0 66

  53. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Examples of OSTBC ➮ Best known OSTBC for n t = 3 , N = 4 , n s = 3 :   − s 3 s 1 0 s 2 s ∗ s ∗ 0 s 1 X =   3 2 − s ∗ s ∗ − s 3 0 2 1 Code rate: 3/4 bpcu ➮ For n t = 4 , N = 4 , n s = 3 :   s 1 0 s 2 − s 3 s ∗ s ∗ 0 s 1   3 2 X =   − s ∗ s ∗ − s 3 0   2 1 s ∗ s ∗ − s 2 0 3 1 Rate is 3 / 4 bpcu. 67

  54. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Summary of OSTBC Relations n s � XX H = | s n | 2 · I = � s � 2 · I n =1 � A n A H B n B H = , = I I n n A n A H − A p A H B n B H − B p B H n � = p = , = n , p n p A n B H B p A H = p n � � � = � H � 2 · I F H F Re where F is such that � ¯ � s vec ( Y ) = F · + vec ( E ) ˜ s 68

  55. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Mutual Information Properties of OSTBC ➮ Average transmitted energy per antenna and time interval = 1 /n t ➮ Channel mutual information, with i.i.d. streams of power 1 /n t : � � HH H � � � I + 1 � � C MIMO ( H ) = log � � n t N 0 � ➮ Mutual information of OSTBC coded system: � � � H � 2 C OSTBC ( H ) = n s 1 + N N log n s n t N 0 ➮ Theorem: C MIMO ≥ C OSTBC , equality only for n t = 2 , n r = 1 69

  56. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Capacity comparison (1% outage) 1 10 Capacity [bits/sec/Hz] 0 10 Average capacity, 1 TX, 1 RX Outage capacity, 1 TX, 1 RX Average capacity, 2 TX, 2 RX Average capacity, 2 TX, 2 RX − OSTBC Outage capacity, 2 TX, 2 RX Outage capacity, 2 TX, 2 RX − OSTBC −1 10 0 5 10 15 20 25 30 35 40 SNR 70

  57. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Non-orthogonal linear STBC ➮ Also called linear dispersion codes ➮ Different approaches: ➠ Optimization of mutual information between the TX & RX: � � �� � max 1 � I + 2 � F H F � � 2 E H log 2 Re � N 0 (no explicit guarantee for full diversity here) ➠ Quasi-orthogonal codes ➠ Codes based on linear constellation (complex-field) precoding s ′ = Φ s 71

  58. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Example: A non-OSTBC ➮ Consider the following diagonal code , where | s n | = 1 : � � s 1 0 X = 0 s 2 ➮ Then � � � � � � � � 1 0 0 0 1 0 0 0 A 1 = , A 2 = , B 1 = B 2 = 0 0 0 1 0 0 0 1 ➮ ML metric for symbol detection: � Y − HX � 2 = � Y � 2 − 2 ReTr � � X H H H Y + � H � 2 � � � � [ H H Y ] 1 , 1 · s 1 [ H H Y ] 2 , 2 · s 2 = − 2 Re − 2 Re + const. 72 ➮ Decoupled detection, but not OSTBC, and not full diversity

  59. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing More examples of linear but not orthogonal STBC ➮ Alamouti code with forgotten conjugates � � s 1 s 2 X = s 2 − s 1 ➮ “Spatial multiplexing” ( R = n t , N = 1 , n s = n t , d = n r ). For n t = 2 : � � � � 1 0 A 1 = , A 2 = 0 1 � � � � 1 0 B 1 = , B 2 = 0 1 73

  60. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Linearly precoded STBC ➮ Transmit W X where W ∈ { W 1 , . . . , W K } . Data model: Y = HW X + E ➮ Fact: If rank { W k } = n t then same diversity order as but without W ➮ Consider correlated fading: R = E [ hh H ] = R T t ⊗ R r , h = vec( H ) ➮ Error probability: ˛ I + 1 − nr ( X 0 − X )( X 0 − X ) H · W H R t W ˛ ˛ E H [ P ( X 0 → X )] ≤ const. · ˛ ˛ N 0 ˛ � � � I + n s ➮ For OSTBC, ( X 0 − X )( X 0 − X ) H ∝ I . Hence, min W H R t W � � � N 0 W 74

  61. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Ex. OSTBC with One-Bit Feedback for n t = 2 ➮ One bit used to choose between �� � | a | � � 0 1 − | a | 2 0 W 1 = , W 2 = � 1 − | a | 2 0 0 | a | � �� � � �� � if � h 1 � > � h 2 � if � h 2 � > � h 1 � ➮ Let P c be the probability that the feedback bit is correct ➮ For P c = 1 (reliable feedback), a = 1 is optimal ➠ antenna selection W may be multiplied with fixed unitary matrix ➠ grid of beams ➮ For P c < 1 (erroneous feedback), � P c | a | 2 + 1 − P c � 2 E H [ P ( X 0 → X )] ≤ SNR 2 · (for n r = 1 ) 1 − | a | 2 75

  62. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing −1 10 Unweighted OSTBC. Optimal weighting (No feedback error). Optimal weighting with feedback error. Error tolerant weighting (No feedback error), Error tolerant weighting with feedback error −2 10 BER −3 10 −4 10 −5 10 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SNR 76

  63. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing MIMO with feedback - optimized transmission n y x s ˜ s W ( I ) U H Encoder Decoder ˜ I H I ( ˜ H ) ➮ Here ➠ U depends on long-term feedback ➠ I depends on short-term (few bits) feedback ➮ State-of-the art designs rely on vector quantization techniques 77

  64. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Frequency-selective channels ➮ Maximum diversity order (with ML detection) will be n r n t L where L =length of CIR ➮ Variety of techniques to achieve maximum diversity ➮ Most widely used transmission technique is MIMO-OFDM ➠ coding across multiple OFDM symbols ➠ coding across subcarriers within one OFDM symbol ➮ Basic model per subcarrier is Y n = H n X n + E n 78

  65. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Le 3: MIMO receivers 79

  66. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Summary of MIMO receivers ➮ Optimal architectures (from Le 1): y = U H y , separates streams ➠ CSI@TX (any fading): linear processing, ˜ ➠ no CSI@TX, fast fading: V-BLAST, optimal receiver is more involved - linear receiver (channel inversion) is grossly suboptimal - successive interference cancellation (SIC) - using soft MIMO demodulator + decoder, possibly iterative ➠ no CSI@TX, slow fading: D-BLAST ➮ Architectures with STBC+outer FEC (from Le 2) ➠ With OSTBC, decoupled detection and thing are simple: � s 1 | 2 + | s 2 − ˆ s 2 | 2 � min � Y − HX � ∼ min | s 1 − ˆ ➠ With non-OSTBC, min � Y − HX � does not decouple - problem similar to for V-BLAST 80

  67. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Theoretically optimal V-BLAST receiver based on SIC decoded stream 1 decoder 1 MMSE 1 y = Hs + e decoded stream 2 decoder 2 MMSE 2 decoded stream 3 decoder 3 MMSE 3 decoded stream n t decoder n t (MMSE n t ) ➮ Optimality only for fast fading. Requires rate allocation on streams. ➮ Major drawback: Requires long codewords. Prone to error propagation. 81

  68. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Theoretically optimal D-BLAST receiver based on SIC x B (1) x B (2) x A (1) x A (2) x A (3) ➮ One codeword split as x ( i ) = [ x A ( i ) x B ( i )] , with rate allocation ➮ Decoding in steps: 1. Decode x A (1) 2. Decode x B (1) , suppressing x A (2) via MMSE 3. Strip off x B (1) , and decode x A (2) 4. Decode x B (2) , suppressing x A (3) via MMSE ➮ Drawbacks: ➠ error propagation ➠ rate loss due to initialization ➠ requires long codewords 82

  69. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Receivers for linear STBC architectures Training Data 1 Data 2 ➮ Received block: Y = HX + E . ➮ X linear in { s 1 , ..., s n s } so with appropriate F , the ML metric is � � vec ( ¯ � � ¯ �� 2 Y ) s � Y − HX � 2 = � � − F � � vec ( ˜ ˜ Y ) s � � ➮ For OSTBC, F T F = � H � 2 I so detection decouples ➮ Spatial multiplexing (V-BLAST) can be seen a degenerated special case of this architecture, with   s 1 . . X = .   s n t 83

  70. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Demodulator+decoder architectures soft output P ( b i | y ) y = Hs + e MIMO demodulator channel decoder a priori information P ( b i ) ➮ Demodulator computes P ( b i | y ) given a priori information P ( b i ) ➮ Decoder adds knowledge of what codewords are valid ➮ Added knowledge in decoder is fed back to demodulator as a priori ➮ Iteration until convergence (a few iterations, normally) 84

  71. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing MIMO demodulation (hard) ➮ General transmission model, with G i,j ∈ R = G · + e , s k ∈ S y s ���� ���� ���� ���� m × n n × 1 m × 1 m × 1 ➮ Models V-BLAST architectures, and (non-O)STBC architectures ➮ Other applications: multiuser detection, ISI, crosstalk in cables, ... ➮ Typically, m ≥ n and G is full rank and has no structure. 85

  72. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing The problem ➮ If e ∼ N ( 0 , σ I ) then the problem is to detect s from y s ∈S n � y − Gs � 2 , y ∈ R m , G ∈ R m × n min � is orthonormal ( Q T Q = I ) Q ∈ R m × n ➮ Let G = QL where L ∈ R n × n is lower triangular � � � � 2 2 Then � y − Gs � 2 = � QQ T ( y − Gs ) � ( I − QQ T )( y − Gs ) � � � � + � � � � � � 2 2 � Q T y − Ls � ( I − QQ T ) y � � � � = + � � s ∈S n � y − Gs � 2 y � Q T y ⇔ s ∈S n � ˜ y − Ls � so min min where ˜ 86

  73. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Some remarks ➮ Integer-constrained least-squares problem, known to be NP hard ➮ Brute force complexity O ( |S n | ) ➮ Typical dimension of problem: n ∼ 8 − 16 , so |S| ∼ 2 – 8 , |S n | ∼ 256 – 10 14 ➮ Needs be solved ➠ in real time ➠ once per received vector y ➠ in power-efficient hardware (beware of heavy matrix algebra) ➠ possibly fixed-point arithmetics ➠ preferably, in a parallel architecture ➮ In communications, we can accept a suboptimal algorithm that finds the correct solution quickly, with high probability 87

  74. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Some remarks, cont. ➮ For G ∝ orthogonal (OSTBC), the problem is trivial. ➮ Our focus is on unstructured G ➮ If G has structure (e.g., Toeplitz) then use algorithm that exploits this ➮ Generally, slow fading (no time diversity) is the hard case 88

  75. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Zero-Forcing ➮ Let y − Ls � = L − 1 ˜ s � arg min ˜ s ∈ R n � y − Gs � = arg min s ∈ R n � ˜ y E.g., Gaussian elimination: ˜ s 1 = ˜ y 1 /L 1 , 1 y 2 − ˜ s 2 = (˜ ˜ s 1 L 2 , 1 ) /L 2 , 2 . . . s k ] � arg min ➮ Then project onto S : ˆ s k = [˜ s k ∈S | s k − ˜ s k | ➮ This works very poorly. Why? Note that s = s + L − 1 Q T e = s + ˜ e )= σ · ( L T L ) − 1 ˜ e , where cov( ˜ ZF neglects the correlation between the elements of ˜ e 89

  76. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Decision tree view { f 1 ( s 1 ) + f 2 ( s 1 , s 2 ) + · · · + f n ( s 1 , . . . , s n ) } min { s 1 ,...,sn } s k ∈S � 2 � k � where f k ( s 1 , ..., s k ) � y k − ˜ L k,l s l l =1 root node s 1 = − 1 s 1 = +1 f 1 (1) = 5 f 1 ( − 1) = 1 1 5 s 2 = − 1 s 2 = +1 s 2 = − 1 s 2 = +1 f 2 ( − 1 , 1) = 1 f 2 (1 , 1) = 3 f 2 ( − 1 , − 1) = 2 f 2 (1 , − 1) = 2 3 2 7 8 s 3 = − 1 s 3 = +1 s 3 = − 1 s 3 = +1 s 3 = − 1 s 3 = +1 s 3 = − 1 s 3 = +1 f 3 ( · · · ) = 1 3 3 1 f 3 ( · · · ) = 4 4 1 9 leaves 7 4 5 6 10 8 9 17 90 { 1 , − 1 , − 1 } {− 1 , − 1 , − 1 } {− 1 , − 1 , 1 } {− 1 , 1 , − 1 } {− 1 , 1 , 1 } { 1 , − 1 , 1 } { 1 , 1 , − 1 } { 1 , 1 , 1 }

  77. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Zero-Forcing with Decision Feedback (ZF-DF) ➮ Consider the following improvement � ˜ � y 1 i) Detect s 1 via: ˆ s 1 = = arg min s 1 ∈S f 1 ( s 1 ) L 1 , 1 � ˜ � y 2 − ˆ s 1 L 2 , 1 ii) Consider s 1 known and set ˆ s 2 = = arg min s 2 ∈S f 2 (ˆ s 1 , s 2 ) L 2 , 2 iii) Continue for k = 3 , ..., n : � � y k − � k − 1 ˜ l =1 L k,l ˆ s l s k = ˆ = arg min s k ∈S f k (ˆ s 1 , ..., ˆ s k − 1 , s k ) L k,k ➮ This also works poorly. Why? Error propagation. Incorrect decision on s i ➠ most of the following s k wrong as well. ➮ Optimized detection order (start with the best) does not help much. 91

  78. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Zero-Forcing with Decision Feedback (ZF-DF) r1 5 1 1 5 1 3 2 2 3 2 7 8 1 3 3 1 4 1 9 4 6 10 9 17 7 4 5 8 92

  79. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Sphere decoding (SD) ➮ Select a sphere radius, R . Then traverse the tree, but once encountering a node with cumulative metric > R , do not follow it down y − Ls � 2 ≤ R ➮ Enumerates all leaf nodes which lie inside the sphere � ˜ ➮ Improvements: ➠ Pruning: At each leaf, update R according to R := min( R, M ) ➠ Improvements: optimal ordering of s k ➠ Branch enumeration (e.g., s k = {− 5 , − 3 , − 1 , − 1 , 3 , 5 } vs. s k = {− 1 , 1 , − 3 , 3 , − 5 , 5 } ) ➮ Known facts: ➠ The algorithm solves the problem, if allowed to finish ➠ Runtime is random and algorithm cannot be parallelized ➠ Under relevant circumstances, average runtime is O (2 αn ) for α > 0 93

  80. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing SD, without pruning, R = 6 r2 5 1 r2a 1 5 1 3 2 2 3 2 7 8 1 3 3 1 4 1 9 4 7 4 5 6 10 8 9 17 94

  81. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing SD, with pruning, R = ∞ r3 5 1 r3a 1 5 1 3 2 2 3 2 7 8 1 3 3 1 4 1 9 4 7 4 5 6 10 8 9 17 95

  82. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing “Fixed complexity” sphere decoding (FCSD) ➮ Select a user parameter r , 0 ≤ r ≤ n ➮ For each node on layer r , consider { s 1 , ..., s r } fixed and solve ( ∗ ) min { f r +1 ( s 1 , ..., s r +1 ) + · · · + f n ( s 1 , ..., s n ) } { sr +1 ,...,sn } s k ∈S ➮ Subproblem (*) solved using |S| r times ➮ Low-complexity approximation (e.g. ZF-DF) can be used. Why? (*) is overdetermined (equivalent G is tall) ➮ Order can be optimized: start with the “worst” ➮ Fixed runtime, fully parallel structure 96

  83. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing FCSD, r = 1 r4 5 1 r4a 1 5 1 3 2 2 3 2 7 8 1 3 3 1 4 1 9 4 7 4 5 6 10 8 9 17 97

  84. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Semidefinite relaxation (for s k ∈ {± 1 } ) − L T ˜ � � � � � � � L T L s s y � s T = s T s � S � ¯ Ψ � ➮ Let ¯ , s ¯ 1 , y T L 1 1 − ˜ 0 Then y − Ls � 2 = ¯ y � 2 = Trace { Ψ S } + � ˜ y � 2 s T Ψ ¯ � ˜ s + � ˜ so the problem is to min Trace { Ψ S } diag { S } = { 1 ,..., 1 } rank { S } =1 s n +1 =1 ¯ ➮ SDR proceeds by relaxing rank { S } = 1 to S positive semidefinite ➮ Interior point methods used to find S ➮ s recovered, e.g., by taking dominant eigenvector and project onto S n 98

  85. Link¨ oping University, ISY, Communication Systems, E. G. Larsson MIMO Fundamentals and Signal Processing Lattice reduction ➮ Extend S n to lattice. For example, if S = {− 3 , − 1 , 1 , 3 } , S n = { . . . , − 3 , − 1 , 1 , 3 , . . . } × · · · × { . . . , − 3 , − 1 , 1 , 3 , . . . } . then ¯ ➮ Decide on orthogonal integer matrix T ∈ R n × n that maps ¯ S n onto itself: T s ∈ ¯ ∀ s ∈ ¯ S n S n T k,l ∈ Z , | T | = 1 , and ➮ Find one such T for which LT ∝ I s ′ � arg min s = T − 1 ˆ s ′ y − ( LT ) s ′ � 2 , and set ˆ ➮ Then solve ˆ S n � ˜ s ′ ∈ ¯ ➮ Critical steps: ➠ Find suitable T (computationally costly, but amortize over many y ) ∈ S n in general, so clipping is necessary s ∈ ¯ S n , but ˆ ➠ ˆ s / 99

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend