fundamentals of mimo w wireless communications pa art ii
play

Fundamentals of MIMO W Wireless Communications Pa art II Prof. - PowerPoint PPT Presentation

Fundamentals of MIMO W Wireless Communications Pa art II Prof. Rakhesh Sing Singh Kshetrimayum Fundamentals of MIMO W Wireless Communications Part II It covers Chapter 5: Channel capacity of simp implified MIMO channels Chapter


  1. Basics of Information Theory • If g(x) is a function defined on a disc discrete RV X , we have, � � ( ( ) ) ( ) = E g x p x g ( x ) X X ∈ X x ( ) ( ) ( ( ( ) ) ) ( ) 2 2 2 = µ = = σ + µ = − = = E x 3 . 5 ; E x 15 . 17 1 ; E log p x 2 . 58 H X 2 X Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 18 Communications, Cambridg ridge University Press, 2017

  2. Basics of Information Theory • For a Bernoulli RV, • the possible outcomes are X={0,1} with corresponding probabilities ( ) { ( ) { { { } } = = 1 − 1 − p X p X x x 1 1 p , p , p p ( ) ( ( ( ) ) ) ( ) ( ) ( ) = − = − − − − = log 2 log l 1 log 1 H X E p x p p p p H p X 2 2 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 19 Communications, Cambridg ridge University Press, 2017

  3. Basics of Information Theory • H(p) is purely a concave function • It is maximum when p=1/2 (supr supreme uncertainty) • and it is zero for p=1 or 0 (uncert certainty is minimum) • Entropy has a key role in information • Entropy has a key role in information ation theory ation theory • Differential entropy: ∞ = � ( ) ( ) ( ( ) ) ) ( ( ( ) ) ) − = − h X f x log f x dx E log f x X 2 X 2 X − ∞ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 20 Communications, Cambridg ridge University Press, 2017

  4. Basics of Information Theory • Find the entropy of complex multiva ltivariate Gaussian distribution • A zero mean multivariate complex G ex Gaussian distribution with covariance matrix R has the followin owing pdf 1 ( ) ( ) − 1 ( ) − − H 1 H 1 ϕ = − = = π − x exp x R x R exp x R x N π R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 21 Communications, Cambridg ridge University Press, 2017

  5. ( ) ( ( ) ( ) ( ) ( ) ( ) − H 1 = − ϕ = − − π − h x E log x log e E ln R x R x f f 2 2 f � � � � � ( ) ( ) ( ) ( ) ( ) ) − � − � H 1 � 1 � = π + = π + log e ln R E x R x log e e ln R E x R x 2 f 2 f i j � � � � ij � � i j , � � � � � � � � � � ( ) ( ) ( ) ( ) ( ) � − � � − � � 1 � � 1 � = π + = = π + log e ln R E x x R log e ln R E x x R 2 f i j 2 f j i � � � � � � � � ij ij � � � � i j , i j , � � � � � � � � � � � � � � � � � � � � � ( ) ( ) ( ) + � ( ) ( ( ) � − � � − � 1 � � 1 � = π = π + log e ln R R R log l e ln R RR 2 2 � ji � � � � � � ij jj � � � � i j , i j , � � � � � � � � � � ) ( ) ( ( ) ) ( ) ( ) ( ( � � � � = π + = π + = π log e ln R I log e ln R N log e ln e R � � � � � 2 2 2 jj � � � � � � i j , � � ( ) = � π log e R � 2 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 22 Communications, Cambridg ridge University Press, 2017

  6. Basics of Information Theory ( ) ( ) ( ) = − I X ; Y Y H X H X | Y • Mutual Information: ( ( ( ) )) ( ( ( ) ) ) = − − − E log l p X E log p X / Y 2 2 • the decrement in the � � � ( ) � p X , Y � � � � ( ( ( ) )) • uncertainty (entropy) of X = − − − E log l p X E log � � � � � � 2 2 ( ) ( ) � � � � � � P P Y Y � � • because of knowledge of Y because of knowledge of Y � − � � � ( ) ( ) P X P Y � � � � = E log 2 � � � � ( ) � � p X , Y � � ( ) ( ) ( ) = + − H X X H Y H X , Y ( ) = I Y , X ( Y ) ( ) = − H Y H Y / X Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 23 Communications, Cambridg ridge University Press, 2017

  7. Basics of Information Theory • Note that conditioning cut downs en ns entropy ( ) ( ) ( ) ≤ = − 0 I X ; Y H Y H Y / X � ( ( ) ) ( ) ( ) ≤ H Y / X H Y • In the above expression, • H(Y) is the differential entropy of y of random variable (RV) Y and • H(Y/X) is the conditional differen rential entropy • The equality is possible for independ pendent Y and X Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 24 Communications, Cambridg ridge University Press, 2017

  8. Basics of Information n Theory • Convex and Concave functions: • Definition: f(x) is strictly convex ove over (a,b) if • ( ( ( ( ) ) ) ) ( ) ( 1 ( ) ( 1 ) ( ) ) ( ) ( ( ) ) λ λ + + − − λ λ < < λ λ + + − − λ λ ∀ ∀ ≠ ≠ ∈ ∈ < < λ λ < < f f u u 1 1 v v f f u u f f v v u u v v a a , , b b , , 0 0 1 1 • In other words, each chord in f(x) lie lies above f(x) • For convex function f(x) , -f(x) is a co a concave Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 25 Communications, Cambridg ridge University Press, 2017

  9. Basics of Information Theory • x 2 , x 4 , e x and xlog(x) ( x≥0 ) are strictly rictly convex function • log(x) , √x are strictly concave functi nction • x is a concave and convex function on • Jensen’s inequality: Jensen’s inequality: • For an arbitrary convex function f( � � ) and any random variable X, ( ( ) ) ( ( )) ≥ E f X f E X X Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 26 Communications, Cambridg ridge University Press, 2017

  10. Basics of Information Theory • For strictly convex function f(x) ( ( ) ) ( ( ) ) > E f X f E X • For example, f(x)=x 2 is a strictly conv convex function • Let us say the possible outcomes are Let us say the possible outcomes are s are X={-1,+1} with equal s are X={-1,+1} with equal probabilities of p={1/2,1/2} • Then E(X)=0 , f(E(X))=0 , but, E(f(X))=1 ))=1 • Hence E(f(X))>f(E(X)) Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 27 Communications, Cambridg ridge University Press, 2017

  11. Basics of Information Theory • Kullback-Leibler distance: • Relative differential entropy of two wo pdf f and g is expressed as � ( ) � � � f x � � ( ) ( ) ( ) ( ( ( ) ) ) = = − − || log log D f g f x dx h X E g X � � 2 ( ) ( ) 2 f f � � � � g g x x • Information inequality: ( ) ≥ D f || g 0 { ( ) } = > S x : f x 0 • Proof: • Define Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 28 Communications, Cambridg ridge University Press, 2017

  12. Basics of Information Theory � � � � � ( ) � � ( ) � � ( ) � � g x g X g X � � � � ( ) ( ) � � � � � � − = − = ≤ D f || g f x log dx E E log log E � � � � � � � � � ( ) � 2 ( ) f 2 ( ) 2 f � � � � � � f x f X f X � � � � • In the above, we have used Jensen’s en’s inequality and log being a concave function concave function � ( ) ( ) � g x � � � � ( ) ( ) ( ) − ≤ = = = = D f || g log f x dx log g x dx log 1 0 � � 2 ( ) 2 2 � � f x S S Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 29 Communications, Cambridg ridge University Press, 2017

  13. Basics of Information Theory • Find the entropy maximizing distribu tribution over the interval (a,b) • Assume f(x) is a distribution over th r the interval (a,b) • We have, ( ( ) ) ( ) ( ) ( ( ( ( ( ))) ( ( ( ))) ( ) ( ) ( ( ) ) ≤ = − − = − + − 0 D f || u h X E log u X h X log b a f f 2 f 2 � ( ) ( ) ≤ − h f X log b a 2 1 ( ) = • A uniform distribution ( u x ) − b a • maximizes entropy over the interval rval Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 30 Communications, Cambridg ridge University Press, 2017

  14. Basics of Information Theory • For a given covariance matrix K, find find the zero mean entropy maximizing distribution over the inf infinite interval ( ) n − ∞ ∞ , • Answer: • A real multivariate Gaussian distribu • A real multivariate Gaussian distribu tribution with the pdf tribution with the pdf � − � 1 1 − x − ( ) � T 1 � φ = 2 π x K exp x x K 2 � � 2 • Proof: ( ) ( ) ( ( ( ) ) ) ≤ = − − φ 0 D f || u h X E log X f f 2 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 31 Communications, Cambridg ridge University Press, 2017

  15. Basics of Information Theory ( ) ) ) ( ( ) ( � log ≤ ϕ X X X h E f f 2 � � 1 1 ( ( ) ) log log ln ln − T 1 � � = − − π π − e E 2 K K x K x 2 f � � � � 2 2 2 2 1 ( ) ( ) log log ln ln − T 1 = π + + e E 2 K x K x 2 f 2 � � � � 1 � ( ) ) ( ) ( ) log ln � − � � 1 � = π + K K e E 2 E x x � �� 2 f f i j � 2 � �� � ij , � � i j � � 1 � ) ( ) ( ) ( log � ln � − � 1 � = π + e 2 K E E x x K � �� 2 f i j � 2 � �� � ij , i j Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 32 Communications, Cambridg ridge University Press, 2017

  16. � � � � 1 � ) ( ) ) ( ) ( ( log � ln � − � 1 � = π + e 2 K E E x x K � �� 2 f j i � 2 � �� � ij , � � i j � � 1 ) ( � ) ) ( ) ( ( log ln � � � − � 1 = π + K K K K e 2 � �� 2 � 2 � �� ji � ij , � � i j � � 1 � ) ( ) ( ) ( log log ln ln � � � − 1 � = π + e 2 K KK K � �� 2 � 2 � �� � jj , , � � i j � � 1 ) ( ) ( � � ) ) ( ( ( ( ) ) jj � log log ln ln � � � � � � � = = π π + + e e 2 2 K K I I I I � � � �� 2 � � �� 2 � , , i j 1 � � ) ( ) ( log log ln ln = π + e 2 K n � � � � 2 2 1 � � ) ( ) ( log ln = π e 2 e K � � � � 2 2 1 � � ( ) log = π 2 K e � � � � 2 2 ( ) = h X ϕ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 33 Communications, Cambridg ridge University Press, 2017

  17. Basics of Information Theory • Capacity of a parallel Gaussian chan hannel • Let us consider n independent Gaus aussian channel with I-O relation for the i th channel as = = + + Y Y X X N N i i i i i i ( ) 2 • where are zero mean Gaussian ssian i.i.d. σ N i ~ N 0 , N i • with the power constraint n � ( ) − 1 2 ≤ n E E X P i = i 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 34 Communications, Cambridg ridge University Press, 2017

  18. Basics of Information Theory city of the i th Gaussian channel first • Let us analyze and find the capacity • Assumption: X i and N i are independ endent RV with zero mean ( ) ( ) 2 2 2 2 = + + = P + σ E Y E X N 2 X N i N i i i i • We may express information capacit • We may express information capacit pacity as pacity as max ( ) ( ) = • ; C f I X Y X i i i ( ) 2 ≤ E X P i • Maximization of mutual information tion is w.r.t. pdf of X i subject to the power constraint Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 35 Communications, Cambridg ridge University Press, 2017

  19. Basics of Information Theory ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) � = − = − + = − = − I X ; Y h Y h Y | X h Y h X N | X h Y h N | X h Y h N i i i i i i i i i i i i i i i • We know that optimal input ( X i ) is G ) is Gaussian distributed, hence output ( Y i ) is also Gaussian distributed and and the noise ( N i ) is also Gaussian distributed � + � + � � ( ( ( ( ) ) ) ) ) ) ( ( ) ) 1 1 1 1 1 1 P P • Hence, • Hence, ( ( ) ) � � � � 2 2 2 2 ≤ ≤ π P π + + σ σ − − π π σ σ = = I X ; Y log 2 2 e log 2 e log 1 i i 2 2 � � 2 2 2 2 σ • In the above case, we have conside sidered X i , Y i and N i are real RV, hence, there is a half factor in the capacity city expression • If we consider complex RV, the capa capacity for real and imaginary part will get added up and the half facto actor becomes 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 36 Communications, Cambridg ridge University Press, 2017

  20. Basics of Information Theory • The I-O relation can be represented ted in the vector form as • y = x + n • Let us find the capacity for this case ase ( ( ) ) ( ) ( ) ( ( ) ) ( ) ( ) ( + ( x ) ) ( ) ( ) ( ( ) ) ( ) ( ) ( ) ( ) = = − − = = − − + = = − − = = − − I x ; y h y h y | x h y h n | x h y h n | x h y h n • where the real random vectors are are � � � � � � Y X N 1 1 1 � � � � � � Y X N � � � � � � 2 2 2 = = = y ; x ; n � � � � � � � � � � � � � � � � � � � � � Y X N n n n Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 37 Communications, Cambridg ridge University Press, 2017

  21. Basics of Information Theory • Note that mutual information is max maximum when N i and X i are i.i.d. Gaussian with zero mean • Hence, for optimal input X i , we have have � � ) � n n � P 1 � � ( ) ( ) ( i ≤ = − = + X ; Y I C h Y h N N log 2 1 � � i i 2 2 σ � � = = i 1 i 1 i + T. M. Cover and J. A. Thomas, Elements of Inform ormation Theory , Wiley, 2006. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 38 Communications, Cambridg ridge University Press, 2017

  22. Capacity of random SIMO ch hannel ignal + can be written as • For a time slot m, the received signa ( ) ( ) = + y m h m x ( m ) n ( m ) ( 0 ) ( ) ( ) ~ N N 2 h ( ) ~ m N 0, I 0, σ I N n m R R C C • Dropping the time index m , we can can rewrite the I-O relation of SIMO system as • y = h x+ n + S. Barbarossa, Multiantenna Wireless Communic unication Systems , Artech House, 2003. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 39 Communications, Cambridg ridge University Press, 2017

  23. Capacity of random SIMO ch hannel � � � � � � y n h • where 1 1 1 [ ] � � � � � � 2 y n h � � � � � � = E x P 2 2 2 = = = y ; n ; h � � � � � � � � � � � � � � � � � � � � � � � � � � � � y n h � � � � � � � � � � � � N N N R R R R R R • The covariance of the received signa ignal vector can be calculated as [ ] [ ] ( ) ( ) ( )( ) H H H H H H 2 = = + + = + = + σ R yy E yy E h x n h x n E E xx hh E nn P hh I N R • Note that we are assuming the chan channel is deterministic at a particular instant of time Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 40 Communications, Cambridg ridge University Press, 2017

  24. Capacity of random SIMO ch hannel • Note that we have assumed that x and n are independent • Then, mutual information ( ) ( ) ( ) ( ) ( ) = − = − − I x ; y h y h y | x h y h n • due to translation invariance of the the entropy ( h ) and independence ( ) ( ( ) ) ( ) ( ) � = + = = y | x h x n / n / n h h x h x h Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 41 Communications, Cambridg ridge University Press, 2017

  25. Capacity of random SIMO ch hannel • Since jointly proper Gaussian random ndom vectors maximize the differential entropy • Hence, N ( ) ( ) ( ) R 2 2 = π = π = π σ = π σ y log R ; n log R R log I log h e h e e e 2 yy 2 nn 2 N 2 R • We next use the upper bound on th n the mutual information by rewriting the capacity of the channel as Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 42 Communications, Cambridg ridge University Press, 2017

  26. Capacity of random SIMO ch hannel � � ( ) ( ( )) N ( ) ( ) ( ) 2 R = − ≤ π − π σ y y n R I x ; h h log det e e log e � � � � 2 yy 2 ( ( ) ) � � � H 2 π + σ � � det e P hh I � � � � � � P N � � � � H R = = = = + + I I hh hh log log log log 2 det det � � � � � � 2 ( ) N R � � N 2 σ 2 R � � � π σ e • For any two matrices M×N matrix A A and N×M matrix B , we have, ( ) ( ) + = + det I AB det I BA M N Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 43 Communications, Cambridg ridge University Press, 2017

  27. Capacity of random S SIMO channel • Hence, for SIMO system, using the a he above identity, we have, � + � P 2 ( ) � � ≤ I x ; y log det 1 h 2 � � 2 � � σ • Therefore, instantaneous capacity Therefore, instantaneous capacity is is � + � P 2 � � = C W log 2 1 h � � 2 σ = � N R uare of Frobenius or Euclidean or L 2 - • where is the square 2 2 H = h h h h i norm of vector h = i 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 44 Communications, Cambridg ridge University Press, 2017

  28. Capacity of random S SIMO channel • The average capacity of this channe nnel is given by � � � � + � P � 2 � � � � = C E log 2 1 h � � � � � 2 � � � σ • Assume iid Rayleigh fading SIMO ch Assume iid Rayleigh fading SIMO ch channel channel = � N R is a sum of the squ square of independent Gaussian RVs • 2 2 H = h h h h i = i 1 • hence it is Chi-square distributed wi d with 2N R degrees of freedom Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 45 Communications, Cambridg ridge University Press, 2017

  29. Capacity of random S SIMO channel • Its pdf is x − − 1 ( ) − N 1 = 2 f x x e R 2 ( ) N h − 2 N 1 ! R R • Therefore, the average capacity of t Therefore, the average capacity of t of this channel is given by of this channel is given by ∞ x � + � − 1 � P P � � − N R 1 = 2 C log 2 1 x x e dx ( ) � � N R 2 2 σ − 2 N 1 ! R 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 46 Communications, Cambridg ridge University Press, 2017

  30. Capacity of random S SIMO channel • Average capacity of random SIMO c O channel � � � � N P � � 2 2 � � R = + C E log 2 1 h � � � � 2 � σ � N � � R • For high SNR case For high SNR case � � � � � � 2 � � � � � � � � � � h � N P � � P � � � 2 � � � � R ≈ = + C E log h E log N E log � � � � � � � � � � � 2 2 R 2 � � � � 2 � 2 � � � N σ σ � � � N � � � � � R � R � � � � � 2 � � � � � h N P � � � � � � R ≈ + log � � log C E � � 2 2 � 2 � σ � � N � � � � � � R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 47 Communications, Cambridg ridge University Press, 2017

  31. Capacity of random S SIMO channel • Note that in high SNR region, • the average capacity of the i.i.d .i.d. Rayleigh channel is N R P • equal to that of AWGN having an g an effective SNR of 2 σ σ • with an additional term which reduc • with an additional term which reduc educes capacity educes capacity • The second tends to zero as → → ∞ N R 2 • since the PDF of h N R • approaches a Dirac delta function ce n centered at 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 48 Communications, Cambridg ridge University Press, 2017

  32. Capacity of random S SIMO channel • Approximate Outage probability: • For a threshold or target rate of R (b (bits/s/Hz), • outage probability is given by � � � � � � � � � 2 � � R P h − 2 1 � � � < 2 � ( ) � � � � = + = < Pr Pr log 1 Pr h ob R ob R ob � � � 2 2 P σ � � � � � � � � � � � � � 2 σ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 49 Communications, Cambridg ridge University Press, 2017

  33. Capacity of random S SIMO channel R − 2 1 2 • Hence the corresponding threshold old on is h 2 P σ / • Let us compute the outage probabil ability as follows R − 2 1 P 2 x σ − � 1 ( ) − N 1 2 = P R x e dx R out ( ) R N N − 2 1 ! R R 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 50 Communications, Cambridg ridge University Press, 2017

  34. Capacity of random S SIMO channel x y = • Substituting , we have, 2 R − 1 2 1 P 2 2 σ � � 1 1 ( ) ( ) − 1 − 1 − − N N y y dy = P R y e R out ( ) − N 1 ! R 0 • For a high SNR, y tends to zero R − − y ≈ e 1 2 1 y < P 2 2 2 σ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 51 Communications, Cambridg ridge University Press, 2017

  35. Capacity of random S SIMO channel R − 1 2 1 R P 2 − 1 2 1 ( ) 2 N σ � R R P − � � 1 1 1 2 1 2 ( ) − N 1 N ≈ = � = P R y dx y R R 2 σ out ( ( ) ) ( ( ) ) ) ) N N N N − − � � N N 1 1 ! ! N N ! ! ! ! � � � � 2 2 R R R R P P R R 0 ( ) � � 0 N ! R � � 2 σ • Hence there is diversity gain of N R R with respect to (w.r.t.) SISO case. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 52 Communications, Cambridg ridge University Press, 2017

  36. Capacity of random S SIMO channel • Exact Outage Probability: � � γ P ( ) � � H H + < = + γ < γ = Pr ob log I hh R Pr r o ob log 1 h h R ; � � � � 2 N 2 2 σ σ R N N � � � � T T � R − 2 1 ( ) ( ) ( ) H H R R H R H � + γ < = + γ < = γ < − = < r ob log 1 h h R Pr ob 1 h h 2 2 Pr ob h h 2 1 Pr ob h h 2 γ � Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 53 Communications, Cambridg ridge University Press, 2017

  37. Capacity of random S SIMO channel • Hence R − 2 1 P 2 x σ − � 1 ( ) − N R 1 = 2 P R x x e dx out ( ( ) ) N − − 2 2 N N 1 1 ! ! R R R 0 0 � � R − 2 1 1 � � γ N , � � R γ � � ( ) ∴ = P R out ( ) Γ N R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 54 Communications, Cambridg ridge University Press, 2017

  38. Capacity of random S SIMO channel ( ) , • where is the incomplete ga e gamma function γ z a z � � ( ( ) ) ( ( ) ) , , ; ; ; ; − − − low a 1 t 1 a a γ = = + − 1 a z t e dt a z z F a a z inc 1 1 0 • and R − 2 1 x , , = = = a N z t R γ 2 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 55 Communications, Cambridg ridge University Press, 2017

  39. Capacity of random S SIMO channel • Hypergeometric functions • Pochhammer symbol defined as ( ( ) ) Γ + a n ( ) ( ) ( ( ) ( ) ( ) ) � � = = = = + + + + + + − − a a a a a a a a 1 1 a a n n 1 1 ( ) n Γ a ( ) ( ) ( ) ) ( ) 2 � = = = + = + a 1 , a a , a a a 1 a a , 0 1 2 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 56 Communications, Cambridg ridge University Press, 2017

  40. Capacity of random S SIMO channel • The Hypergeometric function is defi defined for two complex vectors { } { 1 } , , , , , , , , � = � a a a a = b b b b b 1 2 p 2 q q • and single variable z and single variable z • Note that a is a vector of p elements ents and • b is a vector of q elements p F • that’s why the Hypergeometric func function is denoted as q Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 57 Communications, Cambridg ridge University Press, 2017

  41. Capacity of random S SIMO channel • It is defined as ( ) ( ) ( ) ( ) ( ) � ∞ a a a a a k � � z − 1 2 3 p 1 p k k k k ( ) k k = a ; b ; F z ( ) ( ) p q ( ) ( ) ) ( ) ( ) ) � � b b b b b b k k ! ! 1 1 2 2 q q k k k k = k 0 k Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 58 Communications, Cambridg ridge University Press, 2017

  42. Capacity of random S SIMO channel • For integer a � � − k a 1 z � ( ) ( ) , ! ! � − � low z γ = − − − 1 1 a z a e e � � ! inc � k � = k 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 59 Communications, Cambridg ridge University Press, 2017

  43. Capacity of random M MISO channel • For a time slot m , the received signa ignal can be written as ( ) ( ) ( ) ( ( ) = + y m h m x m n m n � � � � P ( ) ( ) ( ) ~ N N N � � ( ) h m ~ N 0, I x m N 0, I ( ) T T T 2 σ n m ~ N 0, C C � N � C T ( ) ( ) 2 2 ≤ E x m P Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 60 Communications, Cambridg ridge University Press, 2017

  44. Capacity of random M MISO channel • If we assume that channel is not kno t known at the transmitter, • we can have equal power allocation tion and therefore, P • each transmitting antenna will send end signal with power of N N T T • The instantaneous capacity for unifo niform power allocation is given as � � P P 2 � � = + C log 1 h 2 uniform 2 � N σ σ � T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 61 Communications, Cambridg ridge University Press, 2017

  45. Capacity of random M MISO channel • The average capacity of this channe nnel is given by � � P 2 � � = + C E log 2 1 h h 2 � � � � � � σ � � N T T = � N T 2 2 • the PDF of this RV is h h j = j 1 x − 1 ( ) − 1 N 2 = f x x e T 2 ( ) N h − 2 N 1 ! T T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 62 Communications, Cambridg ridge University Press, 2017

  46. Capacity of random M MISO channel • Therefore, the approximate average rage capacity of this channel • for high SNR case is given by � � � � � � �� �� 2 � � � � � � h h P P � � � �� � ≈ + C log � � E log g � �� 2 2 2 � 2 � σ � N � �� � T • One point to be noticed is that there here is no power or array gain in the first term of the average capacity Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 63 Communications, Cambridg ridge University Press, 2017

  47. Capacity of random M MISO channel • Outage probability: � � ( ) � � � � � � R � � � � − N 2 1 P 2 2 ( ) T � � � � � � = + < = < P out R Pr ob log 2 1 h R R Pr ob h � � 2 2 � � � � � � P P � � � � � � σ σ N T � � N � � � � � � � � 2 σ � � � � � � R − 2 1 � 2 ( ) � � = < P R h out P � � � � 2 σ � � N T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 64 Communications, Cambridg ridge University Press, 2017

  48. Capacity of random M MISO channel • Hence, at high SNR (similar analysis ysis with SIMO case above), we get, N ( ) ) T R − 2 1 1 � � ( ) ( ) ≈ ≈ P P R R out out N N � � � � � � T P ( ) N � � � 2 N ! T T 2 σ σ � � N � T • Hence there is diversity gain of w.r.t w.r.t. SISO case Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 65 Communications, Cambridg ridge University Press, 2017

  49. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Average capacity • For equal power allocation: � � � � R � � � � λ H i P P � � � � � � � � = = + + C C E E W W log log 2 1 2 1 � � � � � 2 � σ σ � � N � � = i 1 T • where are the singular values o es of the channel matrix λ i Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 66 Communications, Cambridg ridge University Press, 2017

  50. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Alternatively we could also write the e the mean MIMO capacity for ergodic fading channels in terms of determi rminant of matrices as � � � � � � P Q � � � � = + C E W log 2 det I � � � � N � � 2 2 � � R R R R σ σ � � � � N N � � � � T � � H < HH , N N • where Q is the Wishart matrix defin efined as � R T = Q � H ≥ � H H , N N R T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 67 Communications, Cambridg ridge University Press, 2017

  51. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Assume W=1 for brevity of the analy nalysis � � � � � � P Q � � � � = + C E log 2 det I � � N � � 2 � � R σ σ � � � � N N � � � � T T otation of P/σ 2 as γ • We will use a more convenient nota { } = m min N T N , • Assuming the channel matrix is full r full rank, then, R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 68 Communications, Cambridg ridge University Press, 2017

  52. Capacity of i.i.d. Rayleigh fad ading MIMO channels • It is equivalent to m times (m is the the rank of the full rank matrix H ) bitrary and unordered eigenvalue � of • finding the expectation of an arbitra the Q matrix � � � � � � � � � � � � + � � � + � � � m � � � � � � γ γ γ γ � � � � � � � � ( ( ) ) ( ( ) ) � � � � � = λ = λ C log e E ln 1 m log 2 e E ln 1 � � � � 2 k � � � � � � � � � N N � � � � � T T = k 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 69 Communications, Cambridg ridge University Press, 2017

  53. Capacity of i.i.d. Rayleigh fad ading MIMO channels unordered � is given by • we have the marginal PDF of an uno l ( ) ( ) � �� � − 2 j − + − m − 1 i 1 2 j ! 2 i 2 j 2 j 2 n 2 m 1 ��� + − l n m ( ) ( ) − λ � �� � λ = λ p e ( ( ) ) − 2 i l − − + + � � − − �� �� − − � � i i j j 2 2 j j l l m m 0 2 2 j l j l ! ! ! ! n n m m j j ! ! ! ! = = = = = = i i 0 0 j j 0 0 l l 0 { N } = n max N , T N R { N } = m min N , T N R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 70 Communications, Cambridg ridge University Press, 2017

  54. Capacity of i.i.d. Rayleigh fad ading MIMO channels � � ∞ γ λ � ( ) ( ) � � = + λ λ C m log e ln 1 p d 2 � � N 0 T l � � ( ) ( ) � �� � ∞ − − + − − 2 j 1 2 j ! m 1 i 2 i 2 2 j 2 j 2 n 2 m γ λ ��� ��� � � + − l n m ( ( ) ) ( ) ( ) − λ � � � � � � �� �� � � = = + + N λ λ λ λ λ log log e e ln 1 ln 1 e e d d 2 2 ( ( ) ) − − 2 2 i l i l − − − − − − + + � � �� �� � � 2 ! ! ! i i j j j j 2 2 j j l l � � � � j l n m j = = = i 0 j 0 l 0 0 T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 71 Communications, Cambridg ridge University Press, 2017

  55. Capacity of i.i.d. Rayleigh fad ading MIMO channels ∞ � + � γ � λ d � � ( ) + − l n m − • In order to calculate = λ λ λ ln 1 I e � � � � N T T 0 • The complementary incomplete gam gamma function is given by ∞ = � k dx − − + − − ( ) x q k 1 Γ − + υ − + > q k , e x ; q k 0 υ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 72 Communications, Cambridg ridge University Press, 2017

  56. Capacity of i.i.d. Rayleigh fad ading MIMO channels ∞ � + � γ � λ d � � ( ) + − l n m − = λ λ λ I ln 1 e � � � � N γ γ N T 0 T x = λ − = + − υ = ; q 1 l n m ; γ N T T N N d λ λ d � T λ λ = = = ν = x x dx γ ν ∞ q ( ) � Γ − + υ � q k , ( ) ( ) ( ) − − υ υ q 1 x � ν = + = − I ln 1 x x e dx q 1 1 ! e q k υ = 1 k 0 + M.-S. Alouini and A. J. Goldsmith, “Capacity of Ray Rayleigh fading channels under different adaptive transmission and diversity-combining techniques,” s,” IEEE Trans. Veh. Technol., vol. 48, pp. 1165–1181, Jul 1999. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 73 Communications, Cambridg ridge University Press, 2017

  57. Capacity of i.i.d. Rayleigh fad ading MIMO channels ( ) − q 2 � = ν ν I I q ∞ q ( ) � � Γ − + υ q k , � � − − − q 2 q 1 q 2 − υ e υ ( ) ( )( ) x ( ( ) ( ) ∴ = υ + = = − υ I ln 1 x x e dx q 1 ! k k υ υ = k 1 0 − q q 1 � � υ − + − υ − + − ( ) ( ) ( ) ( ) k q 2 k q 1 = − υ Γ − + υ = − υ Γ − + + υ q 1 ! e q k , q q 1 ! e q k 1, = = k 1 k 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 74 Communications, Cambridg ridge University Press, 2017

  58. Capacity of i.i.d. Rayleigh fad ading MIMO channels • The exponential integral function of n of order r could be expressed as ∞ � − υ − ( ) y r � υ = υ > r = E e y dy ; 0, , r 0,1, r 1 1 • The exponential integral function is n is a particular case of the complementary incomplete gamma ma function ∞ � − − + − ( ) x q k 1 Γ − + υ = − + > , ; 0 q k e x dx q k ∞ � − − ( ) x r Γ − υ = − > > 1 , ;1 0 0 r e x dx r υ υ Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 75 Communications, Cambridg ridge University Press, 2017

  59. Capacity of i.i.d. Rayleigh fad ading MIMO channels ∞ � • Substituting x= ν y, dx= ν dy, we hav have, − − ( ) x r Γ − υ = − > 1 r , e x dx ;1 r 0 υ ∞ ∞ ∞ � � � − r − ν − + − ν − ( ) y ( ) r 1 y r Γ − υ = ν ν = ν 1 r , e y dy e y dy 1 1 1 1 1 1 ∞ � − υ − ( ) y r • Therefore, � υ = υ > = E e y dy ; 0, r 0,1, r r 1 − ( ) r 1 ( ) υ = υ Γ − υ E 1 r , r − q 1 � ( ) ( ) 1 ! ! , ν − + − k q 1 = − ν Γ − + + ν I q e e q k 1 = k 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 76 Communications, Cambridg ridge University Press, 2017

  60. Capacity of i.i.d. Rayleigh fad ading MIMO channels • If we assume that r-1=q-k-1, then 1 n 1-r=-q+k+1 • Hence, − q 1 � � ( ) ( ) υ ∴ = − υ I q 1 ! e E r = 0 k N T • Putting back, = − − = + − υ = r q k ; q 1 l n n m ; γ N + − � � l n m m T � � N ( ) � � γ T = + − I l n m ! e E � � + − + − l n m 1 k � � γ = k 0 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 77 Communications, Cambridg ridge University Press, 2017

  61. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Note that k=0, l+n-m+1-k= l+n-m+1 +1 • and • k=l+n-m, l+n-m+1-k=1 • Hence it similar to k going from 1 to Hence it similar to k going from 1 to 1 to l+n-m+1 1 to l+n-m+1 • Or k+1 going from 0 to l+n-m • Hence, it can be further expressed a ed as N + − � � l n m m T � � N ( ) � � γ T = + − I l n m ! e E � � + k 1 � γ � = k 0 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 78 Communications, Cambridg ridge University Press, 2017

  62. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Hence the average capacity of i.i.d. R . Rayleigh fading MIMO channel � � ∞ γ λ � ( ) ( ) � � = + λ λ C m log e ln 1 p d 2 � � N T 0 l l ( ( ) ( ) ( ) ) � � � � � � �� �� � � ∞ ∞ − − 2 2 j j − − + + − − m m − − 1 1 i i 1 1 2 2 j j ! ! 2 2 i i 2 2 j j j j 2 2 j j 2 2 n n 2 2 m m γ λ γ ��� � + − l n m ( ) ( ) − λ � � � �� � = + λ λ log e ln 1 e d 2 ( ) 2 − i l � − �� − � − + i j j 2 j l � � 2 j l ! ! n m j ! N = = = i 0 j 0 l 0 T 0 N � � − 2 j − + m 1 i ( ) ( ) ( ) � � � � n m l � � T l � � ��� − + − � − − − + 2 i 2 j 2 j 2 n 2 m N 1 2 j ! n m l ! � � � � � � ( ) γ T � � = C e log e E � � � � � � + 2 k 1 ( ) � − � N , N 2 i l � � � − � � − � γ i j 2 j l − + � 2 j ! l ! n m j ! � T R = = = = i 0 j 0 l 0 k 0 + H. Shin and J. H. Lee, “Capacity of multiple-antenna nna fading channels: Spatial fading correlation, Double scattering and Keyhole,” IEEE Trans. Information The Theory , 2003, pp. 2636-2647. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 79 Communications, Cambridg ridge University Press, 2017

  63. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 80 Communications, Cambridg ridge University Press, 2017

  64. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Fig. Average capacity vs SNR (dB) of ) of open loop MIMO system Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 81 Communications, Cambridg ridge University Press, 2017

  65. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Example • The average capacity for i.i.d. Raylei yleigh fading MIMO channel can be calculated as N N � � � � − 2 j ( ) ( ) ( ) � � � � − + � � T m 1 i l n m l � � ��� − + − � − − − + 2 i 2 j 2 j 2 n 2 m 1 2 j ! n m l ! N ( ) � � � � � � γ T � � = C e log e E � � � � � � + 2 k 1 � ( ) � N , N − 2 i l � − � � − � � γ � i j 2 j l − + � � 2 j ! l ! n m j ! T R = = = = i 0 j 0 l 0 k 0 ∞ ( ) � − − xy k • where = E x e y dy k 1 • (exponential integral function of ord f order k), and Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 82 Communications, Cambridg ridge University Press, 2017

  66. Capacity of i.i.d. Rayleigh fad ading MIMO channels • find the average capacity of • (a) MIMO channel with antennas at the transmitter = = = N N N R T and receiver • (b) MISO channel with antenna • (b) MISO channel with antenna nnas at the transmitter and 1 antenna nnas at the transmitter and 1 antenna N N T at the receiver • (c) SIMO channel with one antenna nna at the transmitter and N R antennas at the receiver Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 83 Communications, Cambridg ridge University Press, 2017

  67. Capacity of i.i.d. Rayleigh fad ading MIMO channels • (a) Given that = = N N N R T • and hence, { } = = m min N , N N T T R R { } = = n max N , N N T R = n m Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 84 Communications, Cambridg ridge University Press, 2017

  68. Capacity of i.i.d. Rayleigh fad ading MIMO channels N � − � − 2 j ( ) ( ) ( ) � � � � � � N 1 i l l T � � ��� − � 2 i 2 j 2 j 1 2 j j ! l ! N ( ) � � � � � � γ T � � = C e log e E � � � � � � + 2 k 1 ( ) � − � N , N 2 i l � − � � − � � � γ i j 2 j l � 2 j ! l l ! j ! � = = = = i 0 j 0 l 0 k 0 ) � N � − � − 2 j 1 ( ( ) ) ( ( ) ( ) ) ( ) � � ( ( ) � � T N i l l � � � � − ��� ��� � 2 i 2 j N 1 2 j ! l ! 2 j ! � � � � � � � � � � ( ) ( ) γ γ T T � � � � = = C C e e log log e e E E � � � � � � � � + 2 ( ) k 1 ( ) N , N � − � 2 i l l � � � − � − γ i j 2 j l ! l ! � 2 j ! l ! j ! � = = = = i 0 j 0 l 0 k 0 N � − � − 2 j � � � � N 1 i ( ) ( ) l � � T l l � � ��� − � 2 i 2 j 2 j 1 2 ! N j ( ) � � � � � � � γ T � � = C e log e E � � � � � � + 2 k 1 � ( ) � N , N − 2 i l � − � � � � � γ i j l � � 2 j ! j ! = = = = i 0 j 0 l 0 k 0 N � − � 2 − j � � � � � � � � T N 1 i ( ) l � l � ��� − � 2 j 2 i 2 j 2 j 1 N � � � � � � � ( ) � � γ T � � = C e log e E � � � � � � � � + 2 k 1 � − � N , N 2 i l � � � − � � � � � γ j i j l � 2 � = = = = i 0 j 0 l 0 k 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 85 Communications, Cambridg ridge University Press, 2017

  69. Capacity of i.i.d. Rayleigh fad ading MIMO channels (b) Given that = N 1 R { } { } • and hence, = = n max N , 1 N = = m m min N , 1 1 T T T • Therefore, i=j=l=0, we have, N − N 1 � � T ( ) � T N � � γ T = C e log e E � � + + 2 k 1 N , 1 � γ � T = 0 k Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 86 Communications, Cambridg ridge University Press, 2017

  70. Capacity of i.i.d. Rayleigh fad ading MIMO channels (c) = • Given that 1 N T { { } } = { { } } = = = • and hence, and hence, m min 1 , N 1 = = n max 1 , N N R R R R • Therefore, i=j=l=0, we have, 1 − N 1 � � ( ) � R 1 � � γ = C e log e E E � � + 2 k 1 1 , N � γ � R = k 0 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 87 Communications, Cambridg ridge University Press, 2017

  71. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Example • Show that a simple upper bound on d on the average capacity of Rayleigh fading MIMO channel is given as � � � � � + � � � � � � � N γ γ N � � ( ) ) R � � ≤ + γ C min N log 1 , N log 1 � � 2 2 R T � � � � N � � T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 88 Communications, Cambridg ridge University Press, 2017

  72. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Note that the log-det function is con concave over the set of nonnegative matrices • Therefore, applying Jensen’s inequa quality, we have � � � � γ γ ( ) ( ) H H � � = + ≤ + = + γ log I HH log I HH log 2 1 C E E N 2 N 2 N R � � R R N N � � T T • In the above we have used the relat elation ( ) H = E HH N I T N N R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 89 Communications, Cambridg ridge University Press, 2017

  73. Capacity of i.i.d. Rayleigh fad ading MIMO channels � � � * � � � � � � h h h h h h h � � 11 12 1 N 11 21 21 N 1 � � � � T R � � � � � � � � h h h h h h h ( ) 21 22 2 12 22 22 2 � � N N H = E HH E T R � � � � � � � � � � � � � � � � � � � � � � � � � � � � � h h h h h h � � � � � � � � � � � N N 1 1 N N 2 2 N N N N 1 1 N N 2 2 N N N N N N N N R R R R R R T T T T T T R R T T � ( ) � 2 2 2 � � + + + 0 0 E h h h � � 11 12 1 N T � � ( ) � � 2 2 2 � � � + + + + 0 E h h h 0 � � 21 22 2 N = T � � � � � � � � � � ( ) 2 2 2 � � + + + 0 0 E h h h � � � � N 1 N 2 N N R R R T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 90 Communications, Cambridg ridge University Press, 2017

  74. Capacity of i.i.d. Rayleigh fad ading MIMO channels • In retrospect, the matrices HH H and and H H H have identical nonzero eigenvalues, therefore � � � + � � � γ γ γ ( ) N � � H H R � � = + ≤ + = C E log I H H log I E H H N log 2 1 � � � � 2 N 2 N T � � � � � � � � T N N T N N N N � � � � T T T T T T ( ) H • In the above we have used the relat elation = E H H N I R N T • By combining the above two cases, es, we can obtain the upper bound as � � � + � � � N γ � � ( ) R � � ≤ + γ , C min N log 1 N log 2 1 � � R 2 T � � � � N � � T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 91 Communications, Cambridg ridge University Press, 2017

  75. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Outage capacity of iid Rayleigh fadin ading MIMO channel � � � � � � P � � ( ) H � � = + + < Pr ob R Pr ob W log 2 det I HH R � � N R � � 2 � � N T σ σ � � � � N � � � � T • It has been shown + also that the ins instantaneous capacity C inst leads to a Gaussian RV for all values of N T an and N R + P. J. Smith and M. Shafi, “On a Gaussian approximat imation to the capacity of wireless MIMO systems,” IEEE ICC , 2002, New York, April 2002. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 92 Communications, Cambridg ridge University Press, 2017

  76. Capacity of i.i.d. Rayleigh fad ading MIMO channels • Therefore the outage probability ma y may be nearly approximated for all combination of N T and N R antenna nnas as � � µ − R � � � � ( ) ( ) C ≈ ≈ P P R R Q Q � � � � out out � σ � C • where R is the target data rate, • μ C =E[C inst ], • σ c is the square root of the variance nce of the C inst 2 ∞ z 1 − � ( ) • Q-function is tail integral of a Gauss ussian pdf = 2 Q x e dz π 2 x Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 93 Communications, Cambridg ridge University Press, 2017

  77. Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 94 Communications, Cambridg ridge University Press, 2017

  78. Capacity of i.i.d. Rayleigh fad ading MIMO channels Fig. CDF of open loop N T ×N R MIMO c O channel capacity for SNR=5dB • For a 5×5 MIMO channel, • the 0.2 outage capacity is approx proximately • 7.5 bits/sec/Hz for SNR of 5 d • 7.5 bits/sec/Hz for SNR of 5 d 5 dB 5 dB • Whereas, for a 7 ×7 MIMO channel, nel, • the 0.2 outage capacity is approx proximately • 10.5 bits/sec/Hz for SNR of 5 f 5 dB Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 95 Communications, Cambridg ridge University Press, 2017

  79. Capacity of separately corr rrelated Rayleigh fading MIMO channel • Instantaneous capacity of separately ately correlated Rayleigh fading MIMO channel � � � � � � � � � � � � H P Q P HH � � � � � � � � = + = + C W log 2 det I W W log 2 det I � � � � N N � � 2 � � � � 2 � � R R σ σ σ σ � � � � � � � � N N N N � � � � � � � � T T T T • For separately correlated MIMO cha channel, 1/2 1/2 = H R H R R w T X X � � � �� � C P � 1/2 1/ H H /2 � � �� = + log det I R H R H R 2 N R R w T w R 2 � � N σ W � �� R X X X X � T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 96 Communications, Cambridg ridge University Press, 2017

  80. Capacity of separately corr rrelated Rayleigh fading MIMO channel • For N T =N R =N , and assuming that the t the matrices and and are full rank, we have have for high SNR case, • R R R T X X ( ( ) ) ( ( ) ) + + = = + + det det I I AB AB det det I I BA BA � � � �� � C P � � � H 1/2 H H /2 �� = log det H H R R R 2 w w R R R T 2 � σ � � �� W N X X X � T � � � � � � P { ) } { } ( ( ) � � H �� = + + log det H H log de et R log det R 2 w w 2 R 2 T 2 � � σ � N � X X � � T Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 97 Communications, Cambridg ridge University Press, 2017

  81. Capacity of separately corr rrelated Rayleigh fading MIMO channel • Hence the MIMO channel capacity h ity has been reduced (why reduced?) • and the amount of reduction in the the capacity is given by { { } } { { } } ( ( ) ) ( ( ) ) + log det R log 2 det R 2 2 R R 2 2 2 T T X X X X • Example { } { ) } ( ) ( • Show that is always negative. + log det R log de det R 2 R 2 T X X Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 98 Communications, Cambridg ridge University Press, 2017

  82. Capacity of separately corr rrelated Rayleigh fading MIMO channel • Note that [ ] T H = R E H H T X [ ] H = R E HH R X • The diagonal elements are 1 and The diagonal elements are 1 and • off-diagonal elements hold a valu value between 0 and 1 • Hence ( ) X = trace R N T T ( ) X = trace R N R R Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 99 Communications, Cambridg ridge University Press, 2017

  83. Capacity of separately corr rrelated Rayleigh fading MIMO channel • The geometric mean is bounded by by the arithmetic mean 1 � � N N N 1 1 � R R ( ) R ∏ � � λ ≤ λ = = = R trace 1 i i R � � � � N N N N N N X = = = = i i 1 1 i i 1 1 R R R R • Note that product of all eigenvalues lues of a matrix is equal to the determinant of the matrix N R ( ) ∏ • Therefore = λ ≤ det R 1 R i X = i 1 Rakhesh Singh Kshetrimayum, Fu , Fundamentals of MIMO Wireless 1/19/2018 100 Communications, Cambridg ridge University Press, 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend