measuring v and testing ckm unitarity past present future
play

Measuring |V | and testing CKM unitarity: past, present & - PowerPoint PPT Presentation

J.C. Hardy Cyclotron Institute Texas A&M University Measuring |V | and testing CKM unitarity: past, present & future ud CURRENT STATUS OF V ud .9700 .9800 .9750 nuclear 0 0 + + neutron nuclear mirrors pion V ud V =


  1. J.C. Hardy Cyclotron Institute Texas A&M University Measuring |V | and testing CKM unitarity: past, present & future ud

  2. CURRENT STATUS OF V ud .9700 .9800 .9750 nuclear 0 0 + + neutron nuclear mirrors pion V ud V = 0.97420 + 0.00021 ud

  3. +   < > = Fermi matrix element V G = vector coupling constant 1/2 BR t ) , t = partial half-life: f ( Q EC ) f = statistical rate function: f (Z, V + G < > 2 2 K ft = BASIC WEAK-DECAY EQUATION BR Q EC t 1/2 0 ,1 + 0 ,1 + SUPERALLOWED 0 0 BETA DECAY EXPERIMENT

  4. +  V < > = Fermi matrix element  EXPERIMENT INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS t = ft (1 + ) [ 1 - ( - ) ] =  1/2  R C NS K 2 2G (1 + ) V  R G = vector coupling constant BR + K SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = 2 t 2 G < > V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) ,

  5. + NS INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS t = ft (1 + ) [ 1 - ( - ) ] =    R C K  2 2G (1 + ) V  R , ~1.5% f (Z, Q ) EC 0.3-1.5% f (nuclear structure) ~2.4% EXPERIMENT < > = Fermi matrix element + 2 SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = K 2 G < > V V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) t BR 1/2 G = vector coupling constant f (interaction)

  6. + 2 t = ft (1 + ) [ 1 - ( - ) ] =    R C NS K 2G (1 + EXPERIMENT ) V  R , ~1.5% f (Z, Q ) EC 0.3-1.5% f (nuclear structure) ~2.4% f (interaction) THEORETICAL UNCERTAINTIES INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS  + 2 SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = K 2 G < > < > = Fermi matrix element V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) t BR 1/2 G = vector coupling constant V 0.05 – 0.10%

  7. FROM A SINGLE TRANSITION Experimentally a Scalar current Test for presence of t values constant R V determine G (1 +  ) 2 , t = ft (1 +  ) [ 1 - (  -  ) ] = R V 2G (1 +  ) 2 K NS C R THE PATH TO V ud

  8. FROM A SINGLE TRANSITION 40 Validate the correction terms THE PATH TO V ud 74 Rb NUMBER OF PROTONS, Z 20 30 10 Test for presence of NUMBER OF NEUTRONS, N 20 30 40 50 60 10 a Scalar current t values constant t = ft (1 +  ) [ 1 - (  -  ) ] = R R C NS K 2 2G (1 +  ) V , the Vector current (CVC) Experimentally 2 determine G (1 +  ) V R FROM MANY TRANSITIONS Test Conservation of 10 C

  9. FROM A SINGLE TRANSITION 20 NUMBER OF NEUTRONS, N 20 30 40 50 60 10 10 C 5 10 15 25 40 30 35 Z of daughter +2.5 -0.5 +2.0 +1.5 +1.0 +0.5 +0.0 Correction terms (%)  R 10 30 t = ft (1 +  ) [ 1 - (  -  ) ] = determine G (1 +  ) R C NS K 2 2G (1 +  ) V R , Experimentally 2 V 20 R FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms THE PATH TO V ud 74 Rb NUMBER OF PROTONS, Z ’

  10. FROM A SINGLE TRANSITION 25 20 30 40 50 60 10 10 C 5 10 15 20 30 10 35 Z of daughter +2.5 -0.5 +2.0 +1.5 +1.0 +0.5 +0.0 Correction terms (%)  R ’ NUMBER OF NEUTRONS, N 40 t = ft (1 +  ) [ 1 - (  -  ) ] = V R C NS K 2 2G (1 +  ) V R , Experimentally 2 determine G (1 +  ) R 30 FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms THE PATH TO V ud 74 Rb NUMBER OF PROTONS, Z 20  C

  11. FROM A SINGLE TRANSITION 30 20 30 40 50 60 10 10 C 5 10 15 20 25 35 10 Z of daughter +2.5 -0.5 +2.0 +1.5 +1.0 +0.5 +0.0 Correction terms (%)  R ’  NS NUMBER OF NEUTRONS, N 40 t = ft (1 +  ) [ 1 - (  -  ) ] = V R C NS K 2 2G (1 +  ) V R , Experimentally 2 determine G (1 +  ) R 30 FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms THE PATH TO V ud 74 Rb NUMBER OF PROTONS, Z 20  C

  12. FROM A SINGLE TRANSITION 35 30 40 50 60 10 10 C 5 10 15 20 25 30 Z of daughter NUMBER OF NEUTRONS, N +2.5 -0.5 +2.0 +1.5 +1.0 +0.5 +0.0 Correction terms (%)  R  R ’  NS 20 10 t = ft (1 +  ) [ 1 - (  -  ) ] = V R C NS K 2 2G (1 +  ) V R , Experimentally 2 determine G (1 +  ) R 40 FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms THE PATH TO V ud 74 Rb NUMBER OF PROTONS, Z 20 30  C

  13. FROM A SINGLE TRANSITION THE PATH TO V ud R V 2G (1 +  ) 2 K NS C R t = ft (1 +  ) [ 1 - (  -  ) ] = terms Experimentally Validate the correction t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS R V determine G (1 +  ) 2 ,

  14. FROM A SINGLE TRANSITION terms R V 2G (1 +  ) 2 K NS C R t = ft (1 +  ) [ 1 - (  -  ) ] = THE PATH TO V ud Validate the correction Experimentally a Scalar current Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS R V determine G (1 +  ) 2 ,

  15. FROM A SINGLE TRANSITION weak V = G /G ud V  2 FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms eigenstates 2 mass eigenstates Cabibbo Kobayashi Maskawa (CKM) matrix THE PATH TO V ud t = ft (1 +  ) [ 1 - (  -  ) ] = R C NS K 2 2G (1 +  ) V R 2 2 Experimentally V V V 2 determine G (1 +  ) V R V V V ud us ub V V V cd cs cb td Determine V ud ts tb d' s' b' d s b = WITH CVC VERIFIED 2 Obtain precise value of G (1 +  ) V R ,

  16. FROM A SINGLE TRANSITION  Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS 2 V Validate the correction ud V = G /G 2 2 2 Determine V ud a Scalar current terms 2 C R V 2G (1 +  ) 2 K NS R weak t = ft (1 +  ) [ 1 - (  -  ) ] = THE PATH TO V ud Maskawa (CKM) matrix Cabibbo Kobayashi eigenstates mass eigenstates 2 2 Experimentally ub V V V cb cs cd V V V us ts ud V V V R V determine G (1 +  ) 2 td tb ub Obtain precise value of G (1 +  ) us ud V + V + V = 1 Test CKM unitarity R V 2 d' WITH CVC VERIFIED = b s d b' s' ,

  17. FROM A SINGLE TRANSITION  Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS 2 V Validate the correction ud V = G /G 2 2 2 Determine V ud a Scalar current terms 2 C R V 2G (1 +  ) 2 K NS R weak t = ft (1 +  ) [ 1 - (  -  ) ] = THE PATH TO V ud Maskawa (CKM) matrix Cabibbo Kobayashi eigenstates mass Experimentally 2 eigenstates 2 V V V V V V cb cs cd ub ub ts us ud V V V R V determine G (1 +  ) 2 td , tb Test CKM unitarity = d' WITH CVC VERIFIED Obtain precise value of G (1 +  ) V R 2 V + V + V = 1 ud us b s d s' b' R O I R P D F E I I F E S L I B T I A S S S O S N P O Y L I T N I D O N O C

  18. 42 Ti EC t : PRC 84 , 065502 (2011) 38 Ca 055501 (2005) BR: PRC 72 , 14 O EC Q : PRL 97 , 232501 (2006) Al m 26 Q : PRL 100 , 132502 (2008) Q : PRC 83 , 055501 (2011) Mn, Co 54 50 BR: to be published (2019) 1/2 t : PRC 82 , 035502 (2010) 26 Si Q EC t 1/2 BR + 1/2 EC 0 ,1 Numerous reviews of CVC and CKM-unitarity tests 1/2 t : PRC 97 , 30 S EC Q : PRC 95 , 025501 (2017) 42 Sc + + Parameterization of f function: PRC 91 , 015501 (2015) C Comparative tests of  calculations: PRC 82 , 065501 (2010) Measurement & interpretation of 0 0 : J. Phys G 41, 114004 (2014) BR: PRL 112 , 102502 (2014) Recent critical survey: PRC 91 , 025501 (2015) NS C (  -  ) calculations: PRC 77 , 025501 (2008) Theory/Reviews EC Q : PRL 103 , 252501 (2009) 1/2 t : PRC 74 , 055502 (2006) 34 Cl PRC 92 . 015502 (2015) + 0 ,1 t : data being analyzed BR: data being analyzed 1/2 t : PRC 82 . 045501 (2010) K m 38 BR: to be published (2019) EC Q : PRC 83 , 055501 (2011) 1/2 t ,: PRC 74 , 055502 (2006) 34 Ar EC EC Q : PRC 83 , 055501 (2011) 1/2 t : PRC 77 , 045501 (2008) 10 C EC Q : PRC 70 , 042501(R) (2004) 1/2 t : BR: PRL 91 , 082501 (2003) 22 Mg SUPERALLOWED-DECAY WORK INVOLVING TAMU GROUP 1/2 Q : PRL 103 , 252501 (2009) 62 Ga 10 PRC 83 , 055501 (2011) 60 50 40 30 20 NUMBER OF NEUTRONS, N 10 40 30 20 NUMBER OF PROTONS, Z PRL 97 , 232501 (2006) t ,BR: PRC 68 , EC Q : PRL 95 , 102501 (2005) 1/2 t : PRC 85 , 035501 (2012) 46 V BR: PRC 67 , 051305R (2003) 1/2 t : PRL 86 , 1454 (2001) 74 Rb 015501 (2003) 1/2 035501 (2018)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend