unitarity triangle sides at e e colliders
play

Unitarity Triangle Sides at e + e - colliders Phillip Urquijo - PowerPoint PPT Presentation

Unitarity Triangle Sides at e + e - colliders Phillip Urquijo University of Bonn On behalf of the Belle Collaboration Sides of the UT New physics 0.7 R t excluded area has CL > 0.95 m & m CKM s m d searches


  1. Unitarity Triangle Sides at e + e - colliders Phillip Urquijo University of Bonn On behalf of the Belle Collaboration

  2. Sides of the UT • New physics 0.7 R t excluded area has CL > 0.95 m & m CKM � � s m d � searches in flavour f i t t e r d 0.6 Winter 12 require precise, 0.5 R u V td V tb* over-constraining 0.4 � V cd V cb* measurements of 0.3 sides and angles. � 2 V ud V ub* 0.2 V V cd V cb* ub 0.1 � � • Must measure CKM 1 3 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 � matrix elements, UT CKM fundamental Measurement δ V/V Ref. Parameter parameters of the SM V ub ** (4.4±0.5)10 -3 10% cannot be predicted. V cb (4.1±0.1)10 -2 3% PDG PDG • Limiting test is V td ( Δ md)** (8.4±0.6)10 -3 7% V td /V ts (mix) 3% |V ub | Vs sin2 Φ 1 V cd 0.228±0.006 3% 1209.0085 V tb :single-t ~1.03±0.04 4% 1302.1773 2 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  3. Sides of the UT • New physics 0.7 0.7 R t excluded area has CL > 0.95 excluded area has CL > 0.95 m & m CKM CKM � � s m d � � � searches in flavour f i t t e r f i t t e r d 0.6 0.6 K 3 Winter 12 Winter 12 require precise, sin 2 0.5 � 0.5 R u 1 sol. w/ cos 2 < 0 � 1 V td V tb* over-constraining (excl. at CL > 0.95) 0.4 0.4 � � � V cd V cb* measurements of 2 � 0.3 0.3 K sides and angles. � � 2 2 V ud V ub* 0.2 0.2 V V cd V cb* ub 0.1 0.1 � � � � • Must measure CKM � 1 1 3 3 2 0.0 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 � � matrix elements, UT CKM fundamental Measurement δ V/V Ref. Parameter parameters of the SM V ub ** (4.4±0.5)10 -3 10% cannot be predicted. V cb (4.1±0.1)10 -2 3% PDG PDG • Limiting test is V td ( Δ md)** (8.4±0.6)10 -3 7% V td /V ts (mix) 3% |V ub | Vs sin2 Φ 1 V cd 0.228±0.006 3% 1209.0085 V tb :single-t ~1.03±0.04 4% 1302.1773 2 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  4. Access to R u & R t through B decays B → X c,u l ν Δ m d e,µ _ _ |V tb | |V td | b d _ |V ub | or |V cb | ν W t b _ _ c,u d,u t d b _ _ d,u |V td | |V tb | B → τν B → X s,d γ γ b τ t H + ,W + d,s b |V ub | |V tb | _ u ν W + |V td | or |V ts | + some |V cd | (leptonic&semileptonic) at the end Phillip URQUIJO UT sides at e + e - , FPCP 2013 3

  5. , u ∗ V V ( ρ ρ ρ ρ , η η η η ) η td tb ∗ V V ∗ V V cd cb R u α Φ 2 ud ub ∗ V V Φ 3 γ cd cb Φ 1 β ( 0 , 0 ) ( 1 , 0 ) ρ |V ub | Crisis inclusive |V ub | GGOU =4.39±0.15 +0.12-0.14 )10 -3 ➛ I will discuss strategies to resolve this anomaly. exclusive |V ub |=(3.23 ± 0.30) 10 -3 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  6. Semileptonic Decays tree level, short distance: Decay properties depend b → c e ν directly on | V cb | & | V ub | and m b in the perturbative regime ( α sn ). e W ν b c 5 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  7. Semileptonic Decays tree level, short distance: Decay properties depend B → D e ν directly on | V cb | & | V ub | and m b in the perturbative regime ( α sn ). e W ν quarks are bound by soft B [ ] D b c gluons: non-perturbative long distance interactions of b quark with the light quark in + long distance: the B . 5 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  8. Semileptonic Decays tree level, short distance: Decay properties depend B → D e ν directly on | V cb | & | V ub | and m b in the perturbative regime ( α sn ). e W ν quarks are bound by soft B [ ] D b c gluons: non-perturbative long distance interactions of b quark with the light quark in + long distance: the B . Departure from the heavy quark symmetry can be expressed as ( Λ QCD / m Q ) n corrections 5 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  9. |V cb | & Heavy Quark Parameters inclusive Phillip URQUIJO UT sides at e + e - , FPCP 2013

  10. Inclusive |V cb | O perator P roduction E xpansion predicts the total rate as: b s b 2 2 5 2 3 3 G m 0 µ µ ρ ρ 2 V F b ( 1 A ) A [ c ( r ) c ( r , , ) c ( r , D , LS ) ...] π G Γ = + × + + + + SL cb EW pert 0 2 3 3 2 2 3 3 192 m m m m m π b b b b b Free quark decay Non-perturbative QCD Pert. suppressed by 1/m b2 b � m b , m c: renormalisation scheme enormalisation scheme dependent μ π 2 (- λ 1 ) - kinetic energy of b-quark, Λ QCD2 /m b2 μ G2 ( λ 2 ) - chromomagnetic coupling Non perturbative parameters Λ QCD3 /m b3 ρ D , ρ LS ( ρ 1 , τ 1-3 ) (Spin-orbit, Darwin terms) derived from data. large phase space needed for quark-hadron duality 7 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  11. |V cb | from Inclusive B → X c l + ν & B → X s γ � • HQE params & |V cb | from n n 2 2 3 3 M | M d f ( E , m , m , , , , ) = τ ∫ Γ = µ µ ρ ρ x E B x 0 b c G D LS  E π > 0 spectral “moments” E 0 quark masses Non-perturbative Cut-off parameters alculations in “kinetic” and “1S” mass schemes Moments can be • Need high resolution access to B rest frame, calculated for cut-off in E l unfolded: Hadronic invariant mass ` recoil Lepton momentum π − X u π + Photon energy B . . . e + ¯ ν ` • Use hadronic tag B tag → D (*) Y Υ (4 S ) (Y= n π , m π 0 , p K s , q K...), e − to infer signal B : flavour, charge, p 4 tag B µ + π − J/ ψ K + µ − 8 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  12. |V cb | Determination • Inclusive SL decay recoiling against B tag &' $!# • Unfold to true (Belle) or & • linear calibration in X c multiplicity (Babar) !"# ? ! !%# ? &'' • radiative corrections • Extra constraint on m b from radiative moments. Hadron mass Lepton momentum Photon Energy X,true 16 1500 Entries per 0.1 GeV/c 0 . 05 ≤ E miss − c | � p miss | < 0 . 2GeV 600 600 ] 14 0 2 6 ≤ N Xc ≤ 7 B data 2000 2000 ) B B Continuum Belle D, D* 2 > [(GeV/c B X e 12 → ν 2 2 control control c entries / 80 MeV/c entries / 80 MeV/c Truth 140 fb -1 500 500 B X e → ν 10 Events/0.1 GeV u 1600 1600 1000 Secondaries 8 X,reco 400 400 Combinatorial 6 1200 1200 Babar 2 <m Continuum 4 300 300 2 500 800 800 5 10 15 2 2 2 ] <m > [(GeV/c ) ] 200 200 X,true D** 16 400 400 ] 100 100 0 0 0 0 0 1 1 2 2 3 3 4 4 0 0 0.4 0.6 0.8 0.4 0.6 0.8 1 1 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8 2 2 2.2 2.4 2.2 2.4 2 2 1.5 2 2.5 3 3.5 m m [GeV/c [GeV/c ] ] *B p (GeV/c) X X E * (GeV) γ e 350 350 Belle., PRD.75.032005 (2007) BABAR, PRD 81, 032003 (2010) Babar, PRD 86 112008 (2012) Belle, PRD.75.032001 (2007) 9 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  13. |V cb | Inclusive • Global fit to Semileptonic (and Radiative) spectra: 4.7 PRD 81, 032003 (2010) 4.6 Babar ] 3 2 66 measured moments → |V cb |, m b , m c and non-pert. ) 4.5 2 > [(GeV/c 4.4 params. 4.3 • Kinetic : O( α s /m b2 ) JHEP 1109 ( 2011 ) 055 4.2 X 2 <m 4.1 • 1S : PRD 70, 094017 (2004); PRD 78, 032016 ( 2008 ) 4 • Additional constraints needed for m b : X s γ or m c . 3.9 2 0 0.5 1 1.5 2 * [GeV/c] p [GeV/c] l,min [arXiv:1207.1158] ] 6 ) -3 -3 10 10 × × 43.5 | Kinetic | | cb cb cb 43 1S scheme |V |V |V Kinetic HFAG scheme 0.043 scheme EOF11 43 42.5 Xlv 0.042 Xlv 42.5 42 Xlv+m c 42 Xlv 0.041 41.5 X constraint � s X s γ constraint m constraint 41.5 c 41 0.04 4.5 4.6 4.7 4.5 4.6 4.7 4.55 4.6 m (GeV) 1S 2 m [GeV/c ] 1S 2 m [GeV/c ] b b b 10 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  14. |V cb | Global Fit Results • Theory errors dominate the fit, results depend on off diagonal covariance. • Consistency between X c l ν and X s γ Scheme Constraint |V cb |10 -3 X 2 /ndf • χ 2 low: further X s γ 41.94 ± 0.43(fit) ± 0.59(th) 27/59 kinetic kinetic understanding of m c 41.88 ± 0.44(fit) ± 0.59(th) 24/59 errors needed X s γ 41.96 ± 0.45 23/59 1S 1S - 42.37 ± 0.65 14/48 arXiv:1303.0958 • New 1S fit to B → X s γ (only) 17 2.0 l= 0.5 GeV NNLL + O H a s 2 L for m b . Model- 1 d G C 72 dE g NLL + O H a s L 16 » C 7incl V tb V ts * » ¥ 10 3 1.5 independent description of shape function 15 1.0 • To be extended/applied to Standard Model 14 0.5 V ub . Preliminary H exp. + theo. uncertainties L 0.0 13 1.6 1.8 2.0 2.2 2.4 2.6 4.65 4.7 4.75 4.8 4.85 m b 1 S @ GeV ê c 2 D E g H GeV L 11 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  15. Quark Masses: m c & m b HFAG PDG 2012 Kinetic scheme b → s γ , b → cl ν HPQCD HISQ 1004.4285 u, d, s sea m c , b → cl ν b → cl ν ETMC 1010.3659 n f =2 u, d sea 1S scheme SIMBA b → s γ ( λ =0.5) Chetyrkin et al 0907.2110 b → s γ , b → cl ν Dehnadi et al 1102.2264 b → cl ν contnm 1.22 1.24 1.26 1.28 1.3 1.32 1.34 4.5 4.6 4.7 4.8 m c (m c , n f =4) (GeV) m [GeV] b These m b used for V ub (Kinetic scheme fit result also translated into SF scheme.) 12 Phillip URQUIJO UT sides at e + e - , FPCP 2013

  16. |V cb | exclusive Phillip URQUIJO UT sides at e + e - , FPCP 2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend