measurement of magnetic permeability of steel laminations
play

Measurement of magnetic permeability of steel laminations of - PowerPoint PPT Presentation

Measurement of magnetic permeability of steel laminations of Booster gradient magnets Yury Tokpanov supervisors: Valery Lebedev, Bill Pellico 1 Problem Calculation of impedance of Booster gradient magnets Unknown magnetic permeability


  1. Measurement of magnetic permeability of steel laminations of Booster gradient magnets Yury Tokpanov supervisors: Valery Lebedev, Bill Pellico 1

  2. Problem � Calculation of impedance of Booster gradient magnets � Unknown magnetic permeability of the steel 2

  3. Idea of measurement Electromagnetic wave propagation in strip lines depends upon properties of materials, including magnetic permeability Microstrip line Network analyzer Strip line 3

  4. 1D transmission line Basic element of transmission line: Telegrapher’s equations: ∂ ∂ U I  = − − IR L  ∂ ∂ x t   ∂ ∂ I U = − C  ∂ ∂ x t   Harmonic solutions: = ω − + ω + U A i t ikz B i ikz exp( ) exp( ) γ γ A B = ω − − ω + I i t ikz i t ikz exp( ) exp( ) + ω + ω R i L R i L + ω U R i L = − ω + ω k i C R i L 2 ρ = = ( ) Wave impedance: ω I i C 4

  5. Microstrip line parameters The simplest formulae (valid if W>>H) for parameters per unit length: W H + ωµ ωµ i (1 ) = εε = µ   C L =   +   R sqrt sqrt H   0 W σ σ 0 W       2 2     strip ground   More complicated formulae exist, which take into account edge effects. ε = ε − ε i ' '' µ ω = µ ω − µ ω i ( ) '( ) ''( ) ε '' δ = tan Loss tangent: ε ' If resistive losses are negligible (for example, in the case of copper), then i δ δ L ≈ ω ≈ ωτ  −  kl l LC ρ ≈ ≈ ρ  +  i 1 0 1   C   2 2     5

  6. S-parameters Definition: S-parametes are measured by network analyzer Our case (symmetric): κ + i kl 2 ( 1) tan ω − U i t ikz = S 2 exp( ) ω − ω − ɶ U i t ikz ɶ U i t ikz 4 exp( ) 0 exp( ) κ + κ + i kl 11 2 2 ( 1) tan κ 2 ω + U i t ikz ɶ ω + = U i t ikz 1 exp( ) S 3 exp( ) κ + κ + kl i kl 21 2 2 cos ( 1)sin ρ κ = Z 0 6

  7. Experimental setup Tapering Copper microstrip line Copper strip line Steel microstrip line Network analyzer 7

  8. Copper microstrip line 1 180 150 0.9 120 0.8 90 0.7 60 0.6 30 e itud S11m ase n S11m fit ag h 0.5 0 S11 p 11 m S11p S11p fit -30 S 0.4 -60 0.3 -90 = = W mm H mm 0.2 1.4 12 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 frequency, Hz 1 180 150 0.9 ρ = ρ = Ω Ω 120 17.4 17.4 0.8 0 0 90 0.7 60 0.6 30 S21 magnitude S21m 9 sec S21 phase − τ = ⋅ S21m fit 1.91 10 0.5 0 S21p rad S21p fit -30 0.4 -60 0.3 δ = 0.02 -90 0.2 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 8 frequency, Hz

  9. Tapered copper microstrip line 1 180 150 0.9 120 0.8 90 0.7 60 0.6 de 30 S11m itu ase S11m fit n h ag 0.5 0 S11 p S11p 11 m S11p fit -30 S 0.4 -60 0.3 -90 0.2 -120 0.1 -150 = = W mm H mm 1.4 12 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 frequency, Hz 1 180 150 0.9 ρ = Ω 120 17.3 0.8 0 90 0.7 60 0.6 30 e itud S21m ase 9 sec − τ = ⋅ n S21m fit h ag 0.5 0 1.84 10 21 p S21p 21 m rad S S21p fit S -30 0.4 -60 0.3 δ = -90 0.02 0.2 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 9 frequency, Hz

  10. Strip transmission line 1 180 150 0.9 120 0.8 90 0.7 60 0.6 30 S11 magnitude S11m S11 phase S11m fit 0.5 0 S11p S11p fit -30 0.4 -60 0.3 -90 = = W mm H mm 0.2 12 1.4 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 frequency, Hz 1 180 150 0.9 ρ = Ω 120 10.1 0.8 90 0 0.7 60 0.6 30 S21 magnitude S21m S21 phase 9 sec − τ = ⋅ S21m fit 0.5 0 2 10 S21p rad S21p fit -30 0.4 -60 0.3 δ = -90 0.02 0.2 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 10 frequency, Hz

  11. Weakly-linked resonator 1.00E+00 180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 150 = W mm 12 1.00E-01 120 = H mm 90 0.8 1.00E-02 60 30 S21 magnitude S21 phase S21m 1.00E-03 0 S21p -30 1.00E-04 -60 -90 1.00E-05 -120 -150 1.00E-06 -180 frequency, Hz 9 sec 9 sec − − τ = ⋅ τ = ⋅ 1.88 10 1.85 10 instead of rad rad 11

  12. Steel How to take into account resistive losses: 1 180 R 150 0.9 τ = τ + 1 120 0.8 s c ω i L 90 0.7 60 0.6 S11 magnitude 30 S11m copper R S11 phase S11m steel 0.5 0 ρ = ρ + S11p copper 1 S11p steel -30 s c ω 0.4 i L -60 0.3 -90 0.2 ρ τ ⋅ + ωµµ i -120 (1 )   = L = c c R sqrt 0 0.1 -150  σ  l W 2 0 -180 s   S 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 frequency, Hz σ = ⋅ 6 2.3 10 s 1 180 m 150 0.9 120 Landau-Lifshitz ferromagnetic 0.8 90 resonance model: 0.7 60 µ 0.6 S21 magnitude 30 S21m copper µ = + S21 phase s 1 S21m steel 0.5 0 S21p copper 2 f f S21p steel -30   0.4 + −  i f 1 -60  f 0.3 -90 a r   0.2 -120 0.1 -150 0 -180 1.00E+05 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 8.00E+08 9.00E+08 12 frequency, Hz

  13. Results � Technique for determining necessary parameters is developed � Experimental investigation of the problem is carried out � Rough estimation of magnetic permeability is obtained Plans � Solve problem of additional phase shift � Carry out experiments in strong dc magnetic field (~1-2 T) 13

  14. Thank you! 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend