mealy machines automaton semi groups decision problems
play

Mealy machines, automaton (semi)groups, decision problems, and - PowerPoint PPT Presentation

Mealy machines, automaton (semi)groups, decision problems, and random generation Thibault Godin S eminaire CALIN Paris 13, October 3, 2017 ANR JCJC 12 JS02 012 01 1 / 35 finite Analogue to Dixon theorem [ANALCO16] groups S k S


  1. finite Analogue to Dixon theorem [ANALCO’16] groups  S k × S k  infinite σ  � � = ( A k × A k ) ⋊ � ( π, π ) � groups τ  A k × A k  random generation finiteness Invertible reversible non-coreversible automata generate infinite non Burn- 1 | 1 side groups [LATA’15 w. Klimann and Picantin] b d 1 | 1 1 | 1 Bireversible automata of 0 | 0 c 0 | 0 automaton prime size cannot generate 0 | 0 infinite Burnside groups infinite patterns [MFCS’16 w. Klimann] and group Burnside a e properties 0 | 1 1 | 0 0 | 0 1 | 1 x 3 Mealy automata A ℓ − 1 i | . 3 x � = y z i | . A ℓ dynamics 1 2 of y growth the action A ℓ +1 The set of singular points singular of a contracting automaton is described by a B¨ uchi points automaton [DGKPR’16] Schreier graphs ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ξ singular q � � � � � Wang A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] tillings N 0 | 1 0 x , 0 x , 1 y x 1 | 0 x y 1 | 1 0 1 0 | 0 y y y , 0 y , 1 1 9 / 35

  2. finiteness Invertible reversible non-coreversible automata generate infinite non Burn- side groups [LATA’15 w. Klimann and Picantin] Bireversible automata of automaton prime size cannot generate infinite Burnside groups patterns infinite [MFCS’16 w. Klimann] and group Burnside properties x 3 A ℓ − 1 i | . 3 x � = y z i | . A ℓ 1 2 y growth A ℓ +1 The set of of a contracting is described automaton 9 / 35

  3. 0 | 1 0 | 0 1 | 0 1 | 1 Mealy automata dynamics of the action The set of singular points singular of a contracting automaton is described by a B¨ uchi points automaton [DGKPR’16] Schreier graphs ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ξ singular q � � � � � Wang A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] tillings N 0 | 1 0 x , 0 x , 1 y x 1 | 0 x y 1 | 1 0 1 0 | 0 y y y , 0 y , 1 1 9 / 35

  4. finite Analogue to Dixon theorem [ANALCO’16] groups  S k × S k  infinite σ  � � = ( A k × A k ) ⋊ � ( π, π ) � groups τ  A k × A k  random generation 9 / 35

  5. Finite random groups Theorem Any finite group G is a subgroup of S | G | . 10 / 35

  6. Finite random groups Theorem Any finite group G is a subgroup of S | G | . First idea Pick up some permutations σ 1 , . . . , σ n of { 1 , . . . , k } , look at � σ 1 , . . . , σ n � . 10 / 35

  7. Finite random groups Theorem Any finite group G is a subgroup of S | G | . First idea Pick up some permutations σ 1 , . . . , σ n of { 1 , . . . , k } , look at � σ 1 , . . . , σ n � . 1 2 3 k ! # permutations 10 / 35

  8. Finite random groups Theorem Any finite group G is a subgroup of S | G | . First idea Pick up some permutations σ 1 , . . . , σ n of { 1 , . . . , k } , look at � σ 1 , . . . , σ n � . 1 2 3 k ! # permutations cyclic groups 10 / 35

  9. Finite random groups Theorem Any finite group G is a subgroup of S | G | . First idea Pick up some permutations σ 1 , . . . , σ n of { 1 , . . . , k } , look at � σ 1 , . . . , σ n � . 1 2 3 k ! # permutations cyclic S k groups 10 / 35

  10. Finite random groups Theorem Any finite group G is a subgroup of S | G | . First idea Pick up some permutations σ 1 , . . . , σ n of { 1 , . . . , k } , look at � σ 1 , . . . , σ n � . 1 2 3 k ! # permutations cyclic ? S k groups 10 / 35

  11. Finite random groups Theorem (Dixon, 1969) � S k w.g.p. � σ, τ � = A k 1 2 3 k ! # permutations cyclic groups 10 / 35

  12. Finite random groups Theorem (Dixon, 1969) � S k S k w.g.p. � σ, τ � = A k A k 1 2 3 k ! # permutations cyclic groups 10 / 35

  13. Finite random groups Theorem (Dixon, 1969) � S k S k w.g.p. � σ, τ � = A k A k 1 2 3 k ! # permutations cyclic S k or A k groups 10 / 35

  14. Random automata 1 | 2 1 | 3 2 | 3 3 | 1 2 | 2 3 | 1 3 | 1 1 | 3 a c b 2 | 2 Is the generated group finite? . 11 / 35

  15. Random automata 1 | 2 1 | 3 2 | 3 3 | 1 2 | 2 3 | 1 3 | 1 1 | 3 a c b 2 | 2 Is the generated group finite? Yes, size 2 64 · 3 4 . 11 / 35

  16. Random automata 1 | 2 1 | 3 2 | 3 3 | 1 2 | 2 3 | 1 3 | 1 1 | 3 a c b 2 | 2 Is the generated group finite? Yes, size 2 64 · 3 4 . Difficult problem + unefficient rejection sampling. 11 / 35

  17. Random automata 0 Antonenko + Russeiev 2 | 3 3 | 2 1 3 2 | 2 2 | 1 1 | 1 1 | 3 4 3 | 1 1 | 3 1 | 3 2 | 1 3 | 2 3 | 2 1 | 1 8 2 | 3 2 1 | 1 3 | 2 2 | 3 1 | 2 3 | 2 1 | 2 2 | 3 7 5 6 2 | 1 3 | 1 3 | 3 1 | 1 9 2 | 2 1 | 1 3 | 3 2 | 2 3 | 3 11 / 35

  18. Random automata 0 Antonenko + Russeiev 2 | 3 3 | 2 1 3 2 | 2 2 | 1 1 | 1 1 | 3 4 3 | 1 1 | 3 1 | 3 2 | 1 3 | 2 3 | 2 1 | 1 8 2 | 3 2 1 | 1 3 | 2 2 | 3 1 | 2 3 | 2 1 | 2 2 | 3 7 5 6 2 | 1 3 | 1 3 | 3 1 | 1 9 2 | 2 1 | 1 3 | 3 2 | 2 3 | 3 cyclic automata 11 / 35

  19. Random 2-state cyclic automata σ � � = � ( σ, τ ) , ( τ, σ ) � τ 12 / 35

  20. Random 2-state cyclic automata σ � � = � ( σ, τ ) , ( τ, σ ) � τ Contribution  S k × S k  σ  � � = ( A k × A k ) ⋊ � ( π, π ) � τ  A k × A k  12 / 35

  21. Random 2-state cyclic automata σ � � = � ( σ, τ ) , ( τ, σ ) � τ Contribution  S k × S k  σ  � � = ( A k × A k ) ⋊ � ( π, π ) � τ  A k × A k  S k × S k A k × A k ( A k × A k ) ⋊ � ( π, π ) � 12 / 35

  22. Random 2-state cyclic automata σ � � = � ( σ, τ ) , ( τ, σ ) � τ Contribution  S k × S k  σ  � � = ( A k × A k ) ⋊ � ( π, π ) � τ  A k × A k  S k × S k S k × S k A k × A k ( A k × A k ) ⋊ � ( π, π ) � S k × A k A k × A k ( A k × A k ) ⋊ � ( π, π ) � 12 / 35

  23. Random automata 0 Antonenko + Russeiev 2 | 3 3 | 2 1 3 2 | 2 2 | 1 1 | 1 1 | 3 4 3 | 1 1 | 3 1 | 3 2 | 1 3 | 2 3 | 2 1 | 1 8 2 | 3 2 1 | 1 3 | 2 2 | 3 1 | 2 3 | 2 1 | 2 2 | 3 7 5 6 2 | 1 3 | 1 3 | 3 1 | 1 9 2 | 2 1 | 1 3 | 3 2 | 2 3 | 3 cyclic automata 13 / 35

  24. 1 | 1 b d 0 | 0 0 | 0 0 | 0 σ 1 σ n 1 | 1 1 | 1 0 | 1 . . . a e n f 1 0 | 1 1 | 2 0 | 1 1 | 0 2 | 0 1 | 0 σ a b 3 | 3 2 | 0 0 | 2 3 | 3 τ 1 | 1 ? ”complexity” structurally finite structurally infinite S k × S k S k finite by construction A k S k × A k A k × A k ⋊ � ( π, π ) � md reduction Dixon like decidable finiteness Dixon like (conj.) 2-state bireversible automata 14 / 35

  25. Asymptotics Theorem (Dixon 1969,2005) P ( � σ, τ � = S or A ) ∼ 1 − 1 / k − 1 / k 2 − 4 / k 3 − 23 / k 4 − 171 / k 5 − · · · 15 / 35

  26. Asymptotics Theorem (Dixon 1969,2005) P ( � σ, τ � = S or A ) ∼ 1 − 1 / k − 1 / k 2 − 4 / k 3 − 23 / k 4 − 171 / k 5 − · · · SNC: ∃ w ( σ, τ ) , | w ( σ, τ ) | � = | w ( τ, σ ) | Lemma P ( | σ | = | τ | ) → 0 15 / 35

  27. Asymptotics Theorem (Dixon 1969,2005) P ( � σ, τ � = S or A ) ∼ 1 − 1 / k − 1 / k 2 − 4 / k 3 − 23 / k 4 − 171 / k 5 − · · · SNC: ∃ w ( σ, τ ) , | w ( σ, τ ) | � = | w ( τ, σ ) | Lemma P ( | σ | = | τ | ) → 0 proof: [Erd˝ os, Tur´ an 1967] log | σ | − 1 / 2 log 2 k → N (0 , 1) √ 3 log 3 / 2 k 1 / 15 / 35

  28. Asymptotics Theorem (Dixon 1969,2005) P ( � σ, τ � = S or A ) ∼ 1 − 1 / k − 1 / k 2 − 4 / k 3 − 23 / k 4 − 171 / k 5 − · · · SNC: ∃ w ( σ, τ ) , | w ( σ, τ ) | � = | w ( τ, σ ) | Lemma P ( | σ | = | τ | ) → 0 Conjecture P ( | σ | � = | τ | ) ∼ C / k 2 15 / 35

  29. Asymptotics Theorem (Dixon 1969,2005) P ( � σ, τ � = S or A ) ∼ 1 − 1 / k − 1 / k 2 − 4 / k 3 − 23 / k 4 − 171 / k 5 − · · · SNC: ∃ w ( σ, τ ) , | w ( σ, τ ) | � = | w ( τ, σ ) | Lemma P ( | σ | = | τ | ) → 0 Conjecture P ( | σ | � = | τ | ) ∼ C / k 2 rmq: 1 √ pk k (1 − 1 / p ) exp ( − k (1 − 1 / p ) + k 1 / p ) P ( | σ | = p ) ∼ 15 / 35

  30. 0 | 1 0 | 0 1 | 0 1 | 1 Mealy automata dynamics of the action The set of singular points singular of a contracting automaton is described by a B¨ uchi points automaton [DGKPR’16] Schreier graphs ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ξ singular q � � � � � Wang A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] tillings N 0 | 1 0 x , 0 x , 1 y x 1 | 0 x y 1 | 1 0 1 0 | 0 y y y , 0 y , 1 1 16 / 35

  31. Stabilisers and singular points The stabilisers of an infinite point ξ is Stab �A� ( ξ ) = { g ∈ �A� | g ( ξ ) = ξ } 17 / 35

  32. Stabilisers and singular points The stabilisers of an infinite point ξ is Stab �A� ( ξ ) = { g ∈ �A� | g ( ξ ) = ξ } ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] . . . q � � � � ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] 17 / 35

  33. Stabilisers and singular points The stabilisers of an infinite point ξ is Stab �A� ( ξ ) = { g ∈ �A� | g ( ξ ) = ξ } ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] . . . q � � � � ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] Example 1 | 1 b d 1 | 1 1 | 1 0 | 0 c 0 | 0 0 | 0 a e 0 | 1 1 | 0 0 | 0 1 | 1 ρ e , ρ b , ρ c , ρ d ∈ Stab �G� (1 ω ) studied by Y. Vorobets 17 / 35

  34. Stabilisers and singular points The stabilisers of an infinite point ξ is Stab �A� ( ξ ) = { g ∈ �A� | g ( ξ ) = ξ } ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] . . . q � � � � ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] Interesting elements Example 0 | 0 0 | 1 1 | 1 1 | 1 1 | 0 b d 2 | 2 2 | 2 1 | 1 e a 1 | 1 0 | 0 c 0 | 0 0 | 0 2 ω is stabilised by ρ a a e 0 | 1 1 | 0 0 | 0 1 | 1 ρ e , ρ b , ρ c , ρ d ∈ Stab �G� (1 ω ) studied by Y. Vorobets 17 / 35

  35. Stabilisers and singular points The stabilisers of an infinite point ξ is Stab �A� ( ξ ) = { g ∈ �A� | g ( ξ ) = ξ } ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] . . . q � � � � ξ [1] ξ [2] ξ [3] ξ [4] ξ [5] Interesting elements Example 0 | 0 0 | 1 1 | 1 1 | 1 1 | 0 b d 2 | 2 2 | 2 1 | 1 e a 1 | 1 0 | 0 c 0 | 0 0 | 0 2 ω is stabilised by ρ a a e 0 | 1 Singular points 1 | 0 0 | 0 1 | 1 ρ e , ρ b , ρ c , ρ d ∈ Stab �G� (1 ω ) ξ singular if ∃ g stabilizing ξ and studied by Y. Vorobets avoiding ending in e 17 / 35

  36. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N 18 / 35

  37. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N A ℓ 18 / 35

  38. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N A ℓ q 18 / 35

  39. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N q δ ξ [: n ] ( q ) 18 / 35

  40. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N q δ ξ [: n ] ( q ) δ ζ [: n ′ ] ( q ) ζ 18 / 35

  41. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N q δ ξ [: n ] ( q ) p δ ζ [: n ′ ] ( q ) ζ 18 / 35

  42. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N A m q δ ξ [: n ] ( q ) u p v δ ζ [: n ′ ] ( q ) ζ 18 / 35

  43. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N A m q δ ξ [: n ] ( q ) u p v δ ζ [: n ′ ] ( q ) ζ 1 | 1 0 | 1 0 | 0 e t 1 | 1 18 / 35

  44. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N A m q δ ξ [: n ] ( q ) u p v δ ζ [: n ′ ] ( q ) ζ 1 | 1 1 | 1 0 | 1 0 | 1 0 | 0 t 2 ee et 1 | 1 18 / 35

  45. Contracting automata A contracting ⇐ ⇒ ∃ finite N , ∀ q , ∀ ξ , ∃ n , δ ξ [: n ] ( q ) ∈ N ξ A ℓ N A m q δ ξ [: n ] ( q ) u p v δ ζ [: n ′ ] ( q ) ζ 1 | 1 1 | 1 1 | 1 0 | 1 0 | 1 0 | 1 0 | 0 t 2 e t ℓ t 1 | 1 18 / 35

  46. Contracting automata and singular points 0 | 1 ba − 1 ab − 1 Basilica N automaton 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  47. Contracting automata and singular points 0 | 1 ba − 1 ab − 1 0 0 Basilica N automaton a 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 a 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  48. Contracting automata and singular points 0 | 1 ba − 1 ab − 1 0 0 Basilica N automaton a b 1 | 0 1 | 0 0 | 1 0 1 | 0 1 | 1 a − 1 b a b 0 | 0 0 | 1 e 1 | 0 0 | 0 1 a b − 1 a e 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  49. Contracting automata and singular points 0 | 1 ba − 1 ab − 1 0 0 Basilica N automaton a a ∈ N b 1 | 0 1 | 0 0 | 1 0 0 1 | 0 1 | 1 a − 1 b a e b 0 | 0 0 | 1 e 1 | 0 0 | 0 1 a b − 1 a e e 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  50. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ξ singular q � � � � � ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 0 | 1 ba − 1 ab − 1 Basilica N automaton 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  51. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 0 | 1 ba − 1 ab − 1 Basilica N automaton 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  52. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 0 | 1 ba − 1 ab − 1 Basilica N automaton 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  53. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 0 | 1 ba − 1 ab − 1 Basilica N automaton 1 | 0 1 | 0 0 | 1 1 | 0 1 | 1 a − 1 b 0 | 0 0 | 1 e 1 | 0 0 | 0 a b − 1 1 | 1 0 | 1 1 | 1 , 0 | 0 19 / 35

  54. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ba − 1 ab − 1 Basilica N automaton 1 | 1 a − 1 b 0 | 0 e 0 | 0 a b − 1 1 | 1 1 | 1 , 0 | 0 19 / 35

  55. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ba − 1 ab − 1 B¨ uchi automaton 1 a − 1 b 1 e 0 0 a b − 1 1 , 0 19 / 35

  56. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] ba − 1 ab − 1 B¨ uchi automaton 1 a − 1 b 1 e 0 0 a b − 1 1 , 0 Contribution Sing( B ) = ∅ . 19 / 35

  57. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 1 | 1 b d 1 | 1 1 | 1 0 | 0 c 0 | 0 0 | 0 a e 0 | 1 1 | 0 0 | 0 1 | 1 19 / 35

  58. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 1 | 1 1 b d b d 1 1 | 1 1 | 1 1 0 | 0 c 0 | 0 c 0 0 0 | 0 0 a e a e 0 | 1 1 | 0 0 | 0 0 1 | 1 1 19 / 35

  59. Contracting automata and singular points ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] N ξ singular q � � � � � A m ξ [0] ξ [1] ξ [ ℓ ] ξ [ ℓ + 1] 1 | 1 1 b d b d 1 1 | 1 1 | 1 1 0 | 0 c 0 | 0 c 0 0 0 | 0 0 a e a e 0 | 1 1 | 0 0 | 0 0 1 | 1 1 Proposition [Vorobets, DGKPR] Sing( G ) = (0 + 1) ∗ 1 ω . 19 / 35

  60. finiteness Invertible reversible non-coreversible automata generate infinite non Burn- side groups [LATA’15 w. Klimann and Picantin] Bireversible automata of automaton prime size cannot generate infinite Burnside groups patterns infinite [MFCS’16 w. Klimann] and group Burnside properties x 3 A ℓ − 1 i | . 3 x � = y z i | . A ℓ 1 2 y growth A ℓ +1 The set of of a contracting is described automaton 20 / 35

  61. About the Grigorchuk automaton 1 | 1 b d 1 | 1 1 | 1 0 | 0 c 0 | 0 0 | 0 a e 0 | 1 0 | 0 1 | 0 1 | 1 21 / 35

  62. About the Grigorchuk automaton Actions of the states on the letters: 1 | 1 ρ a : 0 �→ 1 �→ 0 b d 1 | 1 ρ b , ρ c , ρ d , ρ e : 0 �→ 0; 1 �→ 1 1 | 1 0 | 0 c 0 | 0 → permutations 0 | 0 a e 0 | 1 0 | 0 1 | 0 1 | 1 21 / 35

  63. About the Grigorchuk automaton Actions of the states on the letters: 1 | 1 ρ a : 0 �→ 1 �→ 0 b d 1 | 1 ρ b , ρ c , ρ d , ρ e : 0 �→ 0; 1 �→ 1 1 | 1 0 | 0 c 0 | 0 → permutations 0 | 0 → invertible a e 0 | 1 0 | 0 1 | 0 1 | 1 21 / 35

  64. About the Grigorchuk automaton Actions of the states on the letters: 1 | 1 ρ a : 0 �→ 1 �→ 0 b d 1 | 1 ρ b , ρ c , ρ d , ρ e : 0 �→ 0; 1 �→ 1 1 | 1 0 | 0 c 0 | 0 → permutations 0 | 0 → invertible a e Action of a letter on the states: 0 | 1 0 | 0 1 | 0 δ 0 : a , d , e �→ e ; b , c �→ a 1 | 1 → not a permutation 21 / 35

  65. About the Grigorchuk automaton Actions of the states on the letters: 1 | 1 ρ a : 0 �→ 1 �→ 0 b d 1 | 1 ρ b , ρ c , ρ d , ρ e : 0 �→ 0; 1 �→ 1 1 | 1 0 | 0 c 0 | 0 → permutations 0 | 0 → invertible a e Action of a letter on the states: 0 | 1 0 | 0 1 | 0 δ 0 : a , d , e �→ e ; b , c �→ a 1 | 1 → not a permutation → non-reversible 21 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend