matter wave vortices the quantum spirograph
play

Matter wave vortices: the quantum Spirograph Ricardo Carretero, and - PowerPoint PPT Presentation

Matter wave vortices: the quantum Spirograph Ricardo Carretero, and Rafael Navarro, P .G. Kevrekidis, D. Frantzeskakis, P . Torres, and D.S. Hall Nonlinear Dynamical Systems Group http://nlds.sdsu.edu/ Computational Science Research Center


  1. Vortex dynamics in parabolically trapped BECs Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 47/81

  2. BEC vortex: a single one without external potential Take solution with topological charge S : u ( x, y, t ) = f ( r ) e iSθ e − iµt Nonlinear Dynamical Systems – SDSU

  3. BEC vortex: a single one without external potential Take solution with topological charge S : u ( x, y, t ) = f ( r ) e iSθ e − iµt Vortex radial profile satisfies: µ − S 2 � � f + 1 2 rf ′ + 1 2 f ′′ + | f | 2 f = 0 2 r 2 Nonlinear Dynamical Systems – SDSU

  4. BEC vortex: a single one without external potential Take solution with topological charge S : u ( x, y, t ) = f ( r ) e iSθ e − iµt Vortex radial profile satisfies: µ − S 2 � � f + 1 2 rf ′ + 1 2 f ′′ + | f | 2 f = 0 2 r 2 movie (gif), Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 48/81

  5. BEC vortex: precession in the magnetic trap (MT) Precession frequency for a S ω 0 pr ω pr = vortex inside a MT at distance � 2 � r r from center [Fetter]: 1 − R T F ( A ≈ 8 . 88 ). Nonlinear Dynamical Systems – SDSU

  6. BEC vortex: precession in the magnetic trap (MT) Precession frequency for a S ω 0 pr ω pr = vortex inside a MT at distance � 2 � r r from center [Fetter]: 1 − R T F ( A ≈ 8 . 88 ). pr = Ω 2 A µ � � Precession frequency close to center ω pr ≈ S ω 0 2 µ ln Ω Nonlinear Dynamical Systems – SDSU

  7. BEC vortex: precession in the magnetic trap (MT) Precession frequency for a S ω 0 pr ω pr = vortex inside a MT at distance � 2 � r r from center [Fetter]: 1 − R T F ( A ≈ 8 . 88 ). pr = Ω 2 A µ � � Precession frequency close to center ω pr ≈ S ω 0 2 µ ln Ω c) 2 1 0 y −1 2 1000 0 x 500 t −2 0 movie (gif), Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 49/81

  8. BEC vortex interactions: pairwise dynamics Opposite charge [ movie ] ⇒ Nonlinear Dynamical Systems – SDSU

  9. BEC vortex interactions: pairwise dynamics Opposite charge [ movie ] ⇒ Same charge ⇒ [ movie ] Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 50/81

  10. BEC vortex pairs: vortex-vortex interactions Movement induced by phase gradient and density gradient [Kivshar+Pismen+...]. One vortex induces gradients on the other vortex → movement Nonlinear Dynamical Systems – SDSU

  11. BEC vortex pairs: vortex-vortex interactions Movement induced by phase gradient and density gradient [Kivshar+Pismen+...]. One vortex induces gradients on the other vortex → movement Phase gradient of vortex phase e iθ is proportional to 1 / separation 2 and velocity is ⊥ to line joining other vortex ( B = ω vort ) : Nonlinear Dynamical Systems – SDSU

  12. BEC vortex pairs: vortex-vortex interactions Movement induced by phase gradient and density gradient [Kivshar+Pismen+...]. One vortex induces gradients on the other vortex → movement Phase gradient of vortex phase e iθ is proportional to 1 / separation 2 and velocity is ⊥ to line joining other vortex ( B = ω vort ) : y 1 − y 2 x 1 = − B S 2 ˙ , 2 r 2 12 x 1 − x 2 y 1 = + B S 2 ˙ , 2 r 2 12 Nonlinear Dynamical Systems – SDSU

  13. BEC vortex pairs: vortex-vortex interactions Movement induced by phase gradient and density gradient [Kivshar+Pismen+...]. One vortex induces gradients on the other vortex → movement Phase gradient of vortex phase e iθ is proportional to 1 / separation 2 and velocity is ⊥ to line joining other vortex ( B = ω vort ) : y 1 − y 2 x 1 = − B S 2 ˙ , 2 r 2 12 x 1 − x 2 y 1 = + B S 2 ˙ , 2 r 2 12 Superposition of N vortices: N y m − y n � x m ˙ = − B S m 2 r 2 mn n =1 N x m − x n � y m ˙ = + B S m 2 r 2 mn n =1 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 51/81

  14. BEC vortices in MT: reduced ODE dynamics Let us add all contributions: vortex precession inside MT + vortex -vortex interactions Nonlinear Dynamical Systems – SDSU

  15. BEC vortices in MT: reduced ODE dynamics Let us add all contributions: vortex precession inside MT + vortex -vortex interactions Reduced ODE equations of motion for N vortices in MT ( B = ω vort ) : N − S m ω pr y m − B y m − y n � x m ˙ = S n r 2 2 mn n =1 N S m ω pr x m + B x m − x n � y m ˙ = S n r 2 2 mn n =1 Nonlinear Dynamical Systems – SDSU

  16. BEC vortices in MT: reduced ODE dynamics Let us add all contributions: vortex precession inside MT + vortex -vortex interactions Reduced ODE equations of motion for N vortices in MT ( B = ω vort ) : N − S m ω pr y m − B y m − y n � x m ˙ = S n r 2 2 mn n =1 N S m ω pr x m + B x m − x n � y m ˙ = S n r 2 2 mn n =1 Conserved quantities: Hamiltonian and angular momentum: N N N − ω 0 n ) + B pr � � � ln(1 − r 2 S m S n ln( r 2 H = mn ) , 2 4 n =1 n =1 m � = n N � L 2 S n r 2 = n . 0 n =1 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 52/81

  17. Vortex pairs inside MT: OPPOSITE charge pair: S 1 = 1 & S 2 = − 1 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 53/81

  18. Experiments (David Hall) vs. theory a) 50 P m 0 60 120 180 240 b) 8 120 60 6 300 Coordinates in the trap ( � m) 4 2 360 0 0 0 2 420 4 6 240 300 8 445 ms Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 54/81

  19. More experiments (David Hall) → the Spirograph 50 P m a) b) c) 0 60 120 180 240 300 360 420 445 ms Nonlinear Dynamical Systems – SDSU

  20. More experiments (David Hall) → the Spirograph 50 P m a) b) c) 0 60 120 180 240 300 360 420 445 ms Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 55/81

  21. Stationary (non-rotating) equilibria: Equilibrium for diametrically opposed (symmetric) vortices: � B r eq = 2 4 ω 0 pr + B Nonlinear Dynamical Systems – SDSU

  22. Stationary (non-rotating) equilibria: Equilibrium for diametrically opposed (symmetric) vortices: � B r eq = 2 4 ω 0 pr + B Linearize around equilibria: rotations with frequency: � 3 / 2 √ � B 2 ω 0 ω eq = 1 + pr 4 ω 0 pr 4 4 2 2 x 1 , y 1 0 y i 0 −2 −2 −4 −4 0 1 2 3 4 5 −4 −2 0 2 4 t x i Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 56/81

  23. Asymmetric rotating equilibria: Consider diametrically opposed vortices but asymmetric wrt to the center: z 1 = r 1 exp( iω orb t ) and z 2 = − r 2 exp( iω orb t ) with r 1 � = r 2 . Asymmetric equilibrium distance: � � 1 1 B ω 0 + − = 0 . pr 1 − r 2 1 − r 2 2 r 1 r 2 1 2 Nonlinear Dynamical Systems – SDSU

  24. Asymmetric rotating equilibria: Consider diametrically opposed vortices but asymmetric wrt to the center: z 1 = r 1 exp( iω orb t ) and z 2 = − r 2 exp( iω orb t ) with r 1 � = r 2 . Asymmetric equilibrium distance: � � 1 1 B ω 0 + − = 0 . pr 1 − r 2 1 − r 2 2 r 1 r 2 1 2 Rotating with freq: � � r 1 �� ω orb = 1 − r 2 ω 0 pr ( α − β ) + γB , 2 r 2 r 1 where 1 1 1 and α = , β = , γ = . 1 − r 2 1 − r 2 2 r 2 1 2 12 Nonlinear Dynamical Systems – SDSU

  25. Asymmetric rotating equilibria: Consider diametrically opposed vortices but asymmetric wrt to the center: z 1 = r 1 exp( iω orb t ) and z 2 = − r 2 exp( iω orb t ) with r 1 � = r 2 . Asymmetric equilibrium distance: � � 1 1 B ω 0 + − = 0 . pr 1 − r 2 1 − r 2 2 r 1 r 2 1 2 Rotating with freq: � � r 1 �� ω orb = 1 − r 2 ω 0 pr ( α − β ) + γB , 2 r 2 r 1 where 1 1 1 and α = , β = , γ = . 1 − r 2 1 − r 2 2 r 2 1 2 12 In co -rot frame: perturbs about equilibria result in rotating orbits. → epitrochoidal motion (spirograph) in the original frame !!! → Generic motion: quasi-periodic epitrochoids. Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 57/81

  26. Motion about asymmetric equilibria: epitrochoids! Remember the experimental picture: 50 P m a) b) c) 0 60 120 180 240 300 360 420 445 ms Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 58/81

  27. Motion about asymmetric equilibria: epitrochoids! On the original (lab.) frame: Nonlinear Dynamical Systems – SDSU

  28. Motion about asymmetric equilibria: epitrochoids! On the original (lab.) frame: On the co -rotating ( ω orb ) reference frame: Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 59/81

  29. Vortex pairs inside MT: SAME charge pair: S 1 = 1 = S 2 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 60/81

  30. Adim. and transform to co-rot polar coord.: τ = Ω 2 A µ x c ≡ 1 ω vort 2 µ ln � � Adimensionalize: X = R T F , t, pr . ω 0 Ω 2 Transform co -rot to polar: X n = r n cos θ n , Y n = r n sin θ n , δ mn = θ m − θ n : − c r n sin δ mn r m ˙ = , r mn � c cos δ mn 1 1 ˙ r 2 m − r 2 � δ mn = + − . n r m r n r 2 1 − r 2 1 − r 2 mn m n Nonlinear Dynamical Systems – SDSU

  31. Adim. and transform to co-rot polar coord.: τ = Ω 2 A µ x c ≡ 1 ω vort 2 µ ln � � Adimensionalize: X = R T F , t, pr . ω 0 Ω 2 Transform co -rot to polar: X n = r n cos θ n , Y n = r n sin θ n , δ mn = θ m − θ n : − c r n sin δ mn r m ˙ = , r mn � c cos δ mn 1 1 ˙ r 2 m − r 2 � δ mn = + − . n r m r n r 2 1 − r 2 1 − r 2 mn m n Steady state is r 1 = r 2 = r ∗ (for ANY r ∗ ) and θ 1 − θ 2 = π , in co-rot: c 1 ω orb ≡ ˙ θ 1 = ˙ θ 2 = + . 2 r 2 1 − r 2 ∗ ∗ Nonlinear Dynamical Systems – SDSU

  32. Adim. and transform to co-rot polar coord.: τ = Ω 2 A µ x c ≡ 1 ω vort 2 µ ln � � Adimensionalize: X = R T F , t, pr . ω 0 Ω 2 Transform co -rot to polar: X n = r n cos θ n , Y n = r n sin θ n , δ mn = θ m − θ n : − c r n sin δ mn r m ˙ = , r mn � c cos δ mn 1 1 ˙ r 2 m − r 2 � δ mn = + − . n r m r n r 2 1 − r 2 1 − r 2 mn m n Steady state is r 1 = r 2 = r ∗ (for ANY r ∗ ) and θ 1 − θ 2 = π , in co-rot: c 1 ω orb ≡ ˙ θ 1 = ˙ θ 2 = + . 2 r 2 1 − r 2 ∗ ∗ Perturbations about equilibria: r m = r ∗ + R m and δ mn = π + ∆ m Eqs on the pert.: ¨ − ω 2 R m = ep ( R n − R m ) , ¨ − ω 2 ∆ m = ep (∆ m − ∆ n ) , c 2 2 c ω 2 = − ∗ ) 2 , ep 2 r 4 (1 − r 2 ∗ Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 61/81

  33. Epitrochoids about SYM. & ASYM. rotating equil.: √ c � If r ∗ < r crit ≡ 2 ⇒ Epitrochoidal motion with freq ω ep . √ √ c + If r ∗ > r crit ⇒ INSTABILITY! Can it be observed in experiment? Nonlinear Dynamical Systems – SDSU

  34. Epitrochoids about SYM. & ASYM. rotating equil.: √ c � If r ∗ < r crit ≡ 2 ⇒ Epitrochoidal motion with freq ω ep . √ √ c + If r ∗ > r crit ⇒ INSTABILITY! Can it be observed in experiment? Consider ASYMMETRIC equilibria: r 1 � = r 2 and δ 12 = θ 1 − θ 2 = π , where r 1 c 1 ω asym = 1 ) 2 + 1 ) 2 + orb 1 − r ∗ 2 r ∗ 2 ( r ∗ 2 + r ∗ ( r ∗ 2 + r ∗ 2 and radii r 1 = r ∗ 1 and r 2 = r ∗ 2 satisfying 2 ) 2 + c 1 − r ∗ 2 1 − r ∗ 2 − r ∗ 1 r ∗ 2 ( r ∗ 1 + r ∗ � � � � = 0 . 1 2 Nonlinear Dynamical Systems – SDSU

  35. Epitrochoids about SYM. & ASYM. rotating equil.: √ c � If r ∗ < r crit ≡ 2 ⇒ Epitrochoidal motion with freq ω ep . √ √ c + If r ∗ > r crit ⇒ INSTABILITY! Can it be observed in experiment? Consider ASYMMETRIC equilibria: r 1 � = r 2 and δ 12 = θ 1 − θ 2 = π , where r 1 c 1 ω asym = 1 ) 2 + 1 ) 2 + orb 1 − r ∗ 2 r ∗ 2 ( r ∗ 2 + r ∗ ( r ∗ 2 + r ∗ 2 and radii r 1 = r ∗ 1 and r 2 = r ∗ 2 satisfying 2 ) 2 + c 1 − r ∗ 2 1 − r ∗ 2 − r ∗ 1 r ∗ 2 ( r ∗ 1 + r ∗ � � � � = 0 . 1 2 These equilibria will have again epitrochoidal motion with freq: � r ∗ 1 r ∗ r ∗ 1 r ∗ 2 c 2 1 1 2 2 ω ep = 2 ) 2 − − + 1 ) 2 + 2 ) 2 . ( r ∗ 1 + r ∗ 2 r ∗ 2 2 r ∗ 2 2 ) ( r ∗ 1 + r ∗ c (1 − r ∗ 2 c (1 − r ∗ 2 1 2 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 62/81

  36. Bifurcation of equilibria vs. ang. momentum: 2 vortice Angular momentum L 2 0 = r 2 1 + r 2 2 and tan φ = r 2 /r 1 (polar coord.) 0.75 a) c=0.1 0.5 φ / π 0.25 0 −0.25 0.4 0.6 0.8 1 1.2 1.4 L 0 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 63/81

  37. EXPERIMENTAL results: hunting for the pitchfork bifurcation Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 64/81

  38. 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 200 400 t y y 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0 200 400 0.5 0 −0.5 0.5 0 −0.5 Nonlinear Dynamical Systems – SDSU t y y LENCOS, Sevilla, July 2012. – p. 65/81

  39. 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0 50 100 0.5 0 −0.5 0.5 0 −0.5 t y y 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 200 400 t Nonlinear Dynamical Systems – SDSU y y LENCOS, Sevilla, July 2012. – p. 66/81

  40. 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 200 400 t y y 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 100 200 Nonlinear Dynamical Systems – SDSU t y y LENCOS, Sevilla, July 2012. – p. 67/81

  41. 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 50 100 t y y 0.5 0.5 0.4 2 & H 0.2 0 0 x x L 0 0 −0.5 −0.5 −0.2 0.5 0 −0.5 0.5 0 −0.5 0 200 400 Nonlinear Dynamical Systems – SDSU t y y LENCOS, Sevilla, July 2012. – p. 68/81

  42. Recap / outlook Reduced dynamics: experiment → PDE → ODE is very good! Match/understand dynamics in experiment Predict types of behavior: bifurcations Nonlinear Dynamical Systems – SDSU

  43. Recap / outlook Reduced dynamics: experiment → PDE → ODE is very good! Match/understand dynamics in experiment Predict types of behavior: bifurcations Higher number of vortices (in progress...) N v = 3 effective d.o.f. is 3 so possibility of chaos Epitrochoids for N -gons: multi-spirographs Celestial-type mechanics: periodic orbits Nonlinear Dynamical Systems – SDSU

  44. Recap / outlook Reduced dynamics: experiment → PDE → ODE is very good! Match/understand dynamics in experiment Predict types of behavior: bifurcations Higher number of vortices (in progress...) N v = 3 effective d.o.f. is 3 so possibility of chaos Epitrochoids for N -gons: multi-spirographs Celestial-type mechanics: periodic orbits Many, many vortices (in progress...) Molecular dynamics Crystalization into vortex lattices Thermodynamics of vortex clusters → 2D quantum turbulence? Nonlinear Dynamical Systems – SDSU

  45. Recap / outlook Reduced dynamics: experiment → PDE → ODE is very good! Match/understand dynamics in experiment Predict types of behavior: bifurcations Higher number of vortices (in progress...) N v = 3 effective d.o.f. is 3 so possibility of chaos Epitrochoids for N -gons: multi-spirographs Celestial-type mechanics: periodic orbits Many, many vortices (in progress...) Molecular dynamics Crystalization into vortex lattices Thermodynamics of vortex clusters → 2D quantum turbulence? Higher dimensions (in progress...) Vortex rings interactions 3D quantum turbulence? Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 69/81

  46. END... GRACIAS! Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 70/81

  47. NLDS: Nonlinear Dynamical Systems @ SDSU http://nlds.sdsu.edu/ [Graduate Programs] MS in Appl. Mathematics with concentration in Dynamical Systems. Fall Year 1: MATH -537 : Advanced Ordinary Differential Equations MATH-538 : Dynamical Systems & Chaos I MATH-636 : Mathematical Modeling Spring Year 1: MATH-531 : Advanced Partial Differential Equations MATH-639 : Nonlinear Waves MATH-638 : Dynamical Systems & Chaos II Fall Year 2: MATH-635 : Pattern Formation MATH-693A : Advanced Numerical Analysis MATH-797 : Research Spring Year 2: MATH-799A : Thesis – Project Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 71/81

  48. THREE vortices with equal charge S 1 = S 2 = S 3 = +1 Nonlinear Dynamical Systems – SDSU LENCOS, Sevilla, July 2012. – p. 72/81

  49. THREE vortices: We have 6 variables − 2 conserved quantities − co -rotating frame ⇒ 4 degrees of freedom → possibility of chaos! Nonlinear Dynamical Systems – SDSU

  50. THREE vortices: We have 6 variables − 2 conserved quantities − co -rotating frame ⇒ 4 degrees of freedom → possibility of chaos! We can still compute symmetric rotating solutions for r 1 = r 2 = r 3 = r ∗ and θ 1 − θ 2 = θ 2 − θ 3 = θ 3 − θ 1 = 2 π/ 3 with freq: ω orb = c 1 + r 2 1 − r 2 ∗ ∗ Nonlinear Dynamical Systems – SDSU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend