mathematical models for cell movement part i
play

Mathematical models for cell movement Part I F ABIO A. C. C. C - PowerPoint PPT Presentation

Mathematical models for cell movement Part I F ABIO A. C. C. C HALUB Centro de Matem atica e Aplicac oes Fundamentais Universidade de Lisboa Mathematical models for cell movementPart I p. 1 Overview Biological background


  1. Keller-Segel model We write again the system: ∂ρ = −∇ · ( D 1 ∇ ρ ) + ∇ ( D 2 ∇ S ) , ∂t ∂S = − k ( S ) S + ρf ( S, ρ ) + D S ∆ S , ∂t where k ( S ) = η 0 k 2 K/ (1 + KS ) . Mathematical models for cell movementPart I – p. 21

  2. Keller-Segel model We resume the model Amoebas have a random and a chemotactical movement. Mathematical models for cell movementPart I – p. 22

  3. Keller-Segel model We resume the model Amoebas have a random and a chemotactical movement. Chemoattractant S diffuses, is created by the amoebas at rate f and decays at rate k . Mathematical models for cell movementPart I – p. 22

  4. Keller-Segel model From now on, we call the following system the Keller-Segel system ∂ρ = ∇ · ( D ∇ ρ − χρ ∇ S ) , ∂t ∂S = D S ∆ S + ϕ ( ρ, S ) , ∂t where D = D ( S, ρ ) , χ = χ ( S, ρ ) e D S = D S ( S, ρ ) . Mathematical models for cell movementPart I – p. 23

  5. Keller-Segel model From now on, we call the following system the Keller-Segel system ∂ρ = ∇ · ( D ∇ ρ − χρ ∇ S ) , ∂t ∂S = D S ∆ S + ϕ ( ρ, S ) , ∂t where D = D ( S, ρ ) , χ = χ ( S, ρ ) e D S = D S ( S, ρ ) . ϕ ( ρ, S ) describes production and decay of the chemoattractant. Typically ϕ = αρ − βS . Mathematical models for cell movementPart I – p. 23

  6. The Keller-Segel Model ρ =density of cells. S =density of chemo-attractant. Mathematical models for cell movementPart I – p. 24

  7. The Keller-Segel Model ρ =density of cells. S =density of chemo-attractant. ∂ρ = ∇ · ( D ∇ ρ − χρ ∇ S ) , ∂t ∂S = D 0 ∆ S + αρ − βS , ∂t where D = D ( S, ρ ) , χ = χ ( S, ρ ) , D = D ( S, ρ ) e D 0 = D 0 ( S, ρ ) , α > 0 , β ≥ 0 . Mathematical models for cell movementPart I – p. 24

  8. The Keller-Segel Model Some important cases: Mathematical models for cell movementPart I – p. 25

  9. The Keller-Segel Model Some important cases: The classical Keller-Segel model: χ, D, D 0 = const. Mathematical models for cell movementPart I – p. 25

  10. The Keller-Segel Model Some important cases: The classical Keller-Segel model: χ, D, D 0 = const. The no-decay case: β = 0 . Mathematical models for cell movementPart I – p. 25

  11. The Keller-Segel Model Some important cases: The classical Keller-Segel model: χ, D, D 0 = const. The no-decay case: β = 0 . The fast-diffusion limit: elliptic equation for S . Mathematical models for cell movementPart I – p. 25

  12. The Keller-Segel Model Some important cases: The classical Keller-Segel model: χ, D, D 0 = const. The no-decay case: β = 0 . The fast-diffusion limit: elliptic equation for S . With these assumption the equation for S is ∆ S = − ρ . Mathematical models for cell movementPart I – p. 25

  13. The Keller-Segel Model Finally, consider for x ∈ R 2 ∂ t ρ = ∇ · ( ∇ ρ − χρ ∇ S ) , ∆ S = − ρ , with ρ ( · , 0) = ρ I . Mathematical models for cell movementPart I – p. 26

  14. The Keller-Segel Model Properties: Mathematical models for cell movementPart I – p. 27

  15. The Keller-Segel Model Theorem. (Perthame, Dolbeaut, 2004) Consider a solution of the KS system, such that R 2 | x | 2 ρ ( x, t ) dx < ∞ , � 1+ | x | | x − y | ρ ( y, t ) dy ∈ L ∞ ((0 , T ) × R 2 ) . � R 2 Then d � 1 − χM � � R 2 | x | 2 ρ ( x, t ) dx = 4 M . dt 8 π Mathematical models for cell movementPart I – p. 28

  16. The Keller-Segel Model Proof: − 1 � S ( x, t ) = R 2 log | x − y | ρ ( y, t ) dy , 2 π Mathematical models for cell movementPart I – p. 29

  17. The Keller-Segel Model Proof: − 1 � S ( x, t ) = R 2 log | x − y | ρ ( y, t ) dy , 2 π − 1 � x − y ∇ S ( x, t ) = | x − y | 2 ρ ( y, t ) dy . 2 π R 2 Mathematical models for cell movementPart I – p. 29

  18. The Keller-Segel Model Proof: − 1 � S ( x, t ) = R 2 log | x − y | ρ ( y, t ) dy , 2 π − 1 � x − y ∇ S ( x, t ) = | x − y | 2 ρ ( y, t ) dy . 2 π R 2 R 2 ρ ( x ) ρ ( y ) x · ( x − y ) R 2 ρ ( x ) ρ ( y ) y · ( x − y ) � � | x − y | 2 dydx = − | x − y | 2 dydx = Mathematical models for cell movementPart I – p. 29

  19. The Keller-Segel Model Proof: − 1 � S ( x, t ) = R 2 log | x − y | ρ ( y, t ) dy , 2 π − 1 � x − y ∇ S ( x, t ) = | x − y | 2 ρ ( y, t ) dy . 2 π R 2 R 2 ρ ( x ) ρ ( y ) x · ( x − y ) R 2 ρ ( x ) ρ ( y ) y · ( x − y ) � � | x − y | 2 dydx = − | x − y | 2 dydx = R 2 ρ ( x ) ρ ( y ) dxdy = M 2 1 R 2 ρ ( x ) ρ ( y )( x − y ) · ( x − y ) dydx = 1 � � 2 . | x − y | 2 2 2 Mathematical models for cell movementPart I – p. 29

  20. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 Mathematical models for cell movementPart I – p. 30

  21. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 � = − R 2 x ( ∇ ρ − χρ ∇ S ) dx Mathematical models for cell movementPart I – p. 30

  22. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 � = − R 2 x ( ∇ ρ − χρ ∇ S ) dx � χ �� R 2 × R 2 ρ ( x ) ρ ( y ) x · ( x − y ) = R 2 2 ρdx − | x − y | 2 dydx 2 π Mathematical models for cell movementPart I – p. 30

  23. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 � = − R 2 x ( ∇ ρ − χρ ∇ S ) dx � χ �� R 2 × R 2 ρ ( x ) ρ ( y ) x · ( x − y ) = R 2 2 ρdx − | x − y | 2 dydx 2 π = Mathematical models for cell movementPart I – p. 30

  24. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 � = − R 2 x ( ∇ ρ − χρ ∇ S ) dx � χ �� R 2 × R 2 ρ ( x ) ρ ( y ) x · ( x − y ) = R 2 2 ρdx − | x − y | 2 dydx 2 π M 2 2 M − χ = 2 π 2 Mathematical models for cell movementPart I – p. 30

  25. The Keller-Segel Model 1 d 1 � � R 2 | x | 2 ρ ( x ) dx R 2 | x | 2 ∇ · ( ∇ ρ − χρ ∇ S ) dx = 2 dt 2 � = − R 2 x ( ∇ ρ − χρ ∇ S ) dx � χ �� R 2 × R 2 ρ ( x ) ρ ( y ) x · ( x − y ) = R 2 2 ρdx − | x − y | 2 dydx 2 π M 2 � � 2 M − χ 1 − χM = = 2 M . 2 π 2 8 π Mathematical models for cell movementPart I – p. 30

  26. The Keller-Segel Model Theorem. (Perthame, Dolbeaut, 2004) Consider the KS system such that M < 8 π/χ , ρ I ∈ L 1 ( R 2 , (1 + | x | 2 ) dx ) . Then, the system has a weak solution such that (1 + | x | 2 + log ρ ) ρ ∈ L ∞ loc ( R + , L 1 ( R 2 )) , � ∞ R 2 ρ |∇ log ρ − χ ∇ S | 2 dx dt < ∞ , � 0 ρ, ∇√ ρ ∈ L 2 ([0 , T ] × R 2 ) , ∀ T > 0 . Mathematical models for cell movementPart I – p. 31

  27. The Keller-Segel Model Proof: The proof consists in three steps: Mathematical models for cell movementPart I – p. 32

  28. The Keller-Segel Model Proof: The proof consists in three steps: Regularization of solutions, Mathematical models for cell movementPart I – p. 32

  29. The Keller-Segel Model Proof: The proof consists in three steps: Regularization of solutions, Estimations, Mathematical models for cell movementPart I – p. 32

  30. The Keller-Segel Model Proof: The proof consists in three steps: Regularization of solutions, Estimations, Limits. Mathematical models for cell movementPart I – p. 32

  31. The Keller-Segel Model Step 1: (Regularization) Consider � − 1 2 π log | z | if | z | > ε , K ε ( z ) = − 1 2 π log ε if | z | ≤ ε . Mathematical models for cell movementPart I – p. 33

  32. The Keller-Segel Model Step 1: (Regularization) Consider � − 1 2 π log | z | if | z | > ε , K ε ( z ) = − 1 2 π log ε if | z | ≤ ε . This means that, from S ( x, t ) = − 1 � R 2 log | x − y | ρ ( y, t ) dy 2 π we change to � S ε ( x, t ) = R 2 K ε ( x − y ) ρ ( y, t ) dy = ( K ε ∗ ρ ε ) ( x, t ) . Mathematical models for cell movementPart I – p. 33

  33. The Keller-Segel Model Step 2: (Estimations) Equation: ∂ t ρ ε = ∇ · ( ∇ ρ ε − χρ ε ∇ ( K ε ∗ ρ ε )) . d dt Mathematical models for cell movementPart I – p. 34

  34. The Keller-Segel Model Step 2: (Estimations) Equation: ∂ t ρ ε = ∇ · ( ∇ ρ ε − χρ ε ∇ ( K ε ∗ ρ ε )) . Then: d � 4 M − χ � R 2 | x | 2 ρ ε ( x, t ) dx = ρ ε ( x, t ) ρ ε ( y, t ) dxdy dt 2 π | y − x | >ε Mathematical models for cell movementPart I – p. 34

  35. The Keller-Segel Model Step 2: (Estimations) Equation: ∂ t ρ ε = ∇ · ( ∇ ρ ε − χρ ε ∇ ( K ε ∗ ρ ε )) . Then: d � 4 M − χ � R 2 | x | 2 ρ ε ( x, t ) dx = ρ ε ( x, t ) ρ ε ( y, t ) dxdy dt 2 π | y − x | >ε ≤ 4 M , Mathematical models for cell movementPart I – p. 34

  36. The Keller-Segel Model Step 2: (Estimations) Equation: ∂ t ρ ε = ∇ · ( ∇ ρ ε − χρ ε ∇ ( K ε ∗ ρ ε )) . Then: d � 4 M − χ � R 2 | x | 2 ρ ε ( x, t ) dx = ρ ε ( x, t ) ρ ε ( y, t ) dxdy dt 2 π | y − x | >ε ≤ 4 M , We prove similar ε -independent bounds and take the limit ε → 0 . Mathematical models for cell movementPart I – p. 34

  37. The Keller-Segel Model Corollary. In the two dimensional case, we have: Mathematical models for cell movementPart I – p. 35

  38. The Keller-Segel Model Corollary. In the two dimensional case, we have: if M < 8 π/χ : global existence of solutions, Mathematical models for cell movementPart I – p. 35

  39. The Keller-Segel Model Corollary. In the two dimensional case, we have: if M < 8 π/χ : global existence of solutions, if M > 8 π/χ : finite-time-blow-up. Mathematical models for cell movementPart I – p. 35

  40. The Keller-Segel Model Corollary. In the two dimensional case, we have: if M < 8 π/χ : global existence of solutions, if M > 8 π/χ : finite-time-blow-up. This is in agreement with the fact that aggregation occurs only if the initial density of Dd is above certain threshold. Mathematical models for cell movementPart I – p. 35

  41. The Keller-Segel Model Corollary. In the two dimensional case, we have: if M < 8 π/χ : global existence of solutions, if M > 8 π/χ : finite-time-blow-up. This is in agreement with the fact that aggregation occurs only if the initial density of Dd is above certain threshold. What happens if M = 8 π/χ ? Mathematical models for cell movementPart I – p. 35

  42. The Keller-Segel Model Suppose general dimension n . Mathematical models for cell movementPart I – p. 36

  43. The Keller-Segel Model Suppose general dimension n . Theorem. (Corrias, Perthame, Zaag, 2004) There exists a constant K such that || ρ I || L n/ 2 ( R n ) ≤ K then the KS system has a global in time weak solution such that || ρ I || L p ( R n ) , max { 1 , n 2 − 1 } ≤ p ≤ n || ρ ( · , t ) || L p ( R n ) ≤ 2 , C ( t, K, || ρ I || L p ( R n ) ) , n || ρ ( · , t ) || L p ( R n ) ≤ 2 < p ≤ ∞ . Mathematical models for cell movementPart I – p. 36

  44. The Keller-Segel Model Theorem. (Corrias, Perthame, Zaag, 2004) Suppose that n ≥ 3 and | x | 2 � 2 ρ I ( x ) dx ≤ CM n/ ( n − 2) , R n and assume that M ≥ M 0 for some M 0 > 0 . Then the KS system has no global solution with fast decay. Mathematical models for cell movementPart I – p. 37

  45. Keller-Segel Models Consider the following Keller-Segel model (with prevention of overcrowding ) (Hillen-Painter model): ∂ t ρ = ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) ∆ S = − ρ , where β ( ρ ) = 0 , ρ ≥ ¯ ρ > 0 . Mathematical models for cell movementPart I – p. 38

  46. Keller-Segel Models Consider the following Keller-Segel model (with prevention of overcrowding ) (Hillen-Painter model): ∂ t ρ = ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) ∆ S = − ρ , where β ( ρ ) = 0 , ρ ≥ ¯ ρ > 0 . Theorem. (Hillen, Painter, 2002) Solutions of the HP model exist globally. Mathematical models for cell movementPart I – p. 38

  47. Keller-Segel Models Proof: Consider: J + = { x | ρ ( x, t ) > ¯ ρ } , J 0 = { x | ρ ( x, t ) = ¯ ρ } , J − = { x | ρ ( x, t ) < ¯ ρ } , Mathematical models for cell movementPart I – p. 39

  48. Keller-Segel Models Proof: Consider: J + = { x | ρ ( x, t ) > ¯ ρ } , J 0 = { x | ρ ( x, t ) = ¯ ρ } , J − = { x | ρ ( x, t ) < ¯ ρ } , and define � ρ ( x, t ) − ¯ ρ if x ∈ J + , ρ + ( x, t ) = 0 otherwise. Mathematical models for cell movementPart I – p. 39

  49. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − Mathematical models for cell movementPart I – p. 40

  50. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − � = ( ρ − ¯ ρ ) ρ t J + Mathematical models for cell movementPart I – p. 40

  51. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − � = ( ρ − ¯ ρ ) ρ t J + � = ( ρ − ¯ ρ ) ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) , J + Mathematical models for cell movementPart I – p. 40

  52. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − � = ( ρ − ¯ ρ ) ρ t J + � = ( ρ − ¯ ρ ) ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) , J + � � |∇ ρ | 2 + = − ( ρ − ¯ ρ ) ∇ ρ · ν J + ∂ J + Mathematical models for cell movementPart I – p. 40

  53. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − � = ( ρ − ¯ ρ ) ρ t J + � = ( ρ − ¯ ρ ) ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) , J + � � |∇ ρ | 2 + = − ( ρ − ¯ ρ ) ∇ ρ · ν J + ∂ J + � � + ( ∇ ρ ) χρβ ( ρ ) ∇ S − ( ρ − ¯ ρ ) χρβ ( ρ ) ∇ S · ν J + ∂ J + Mathematical models for cell movementPart I – p. 40

  54. Keller-Segel Models 1 d �� � � � dt || ρ + ( · , t ) || 2 ρ + ρ + = + + L 2 ( R n ) t 2 J + J 0 J − � = ( ρ − ¯ ρ ) ρ t J + � = ( ρ − ¯ ρ ) ∇ · ( ∇ ρ − χβ ( ρ ) ρ ∇ S ) , J + � � |∇ ρ | 2 + = − ( ρ − ¯ ρ ) ∇ ρ · ν J + ∂ J + � � + ( ∇ ρ ) χρβ ( ρ ) ∇ S − ( ρ − ¯ ρ ) χρβ ( ρ ) ∇ S · ν J + ∂ J + � |∇ ρ | 2 ≤ 0 . = − J + Mathematical models for cell movementPart I – p. 40

  55. Keller-Segel Models If || ρ I || L ∞ ( R n ) ≤ ¯ ρ , then ρ + ( · , 0) = 0 , Mathematical models for cell movementPart I – p. 41

  56. Keller-Segel Models If || ρ I || L ∞ ( R n ) ≤ ¯ ρ , then ρ + ( · , 0) = 0 , ρ + ( · , t ) = 0 , Mathematical models for cell movementPart I – p. 41

  57. Keller-Segel Models If || ρ I || L ∞ ( R n ) ≤ ¯ ρ , then ρ + ( · , 0) = 0 , ρ + ( · , t ) = 0 , || ρ ( · , t ) || L ∞ ( R n ) ≤ ¯ ρ . Mathematical models for cell movementPart I – p. 41

  58. Keller-Segel Models If || ρ I || L ∞ ( R n ) ≤ ¯ ρ , then ρ + ( · , 0) = 0 , ρ + ( · , t ) = 0 , || ρ ( · , t ) || L ∞ ( R n ) ≤ ¯ ρ . If || ρ I || L ∞ ( R n ) > ¯ ρ , then in a neighbourhood of a point x such that ρ ( x, t ) > ¯ ρ , the equation is ∂ t ρ = ∆ ρ and the maximum principle holds. Mathematical models for cell movementPart I – p. 41

  59. Keller-Segel Models Define the non-local gradient 1 � ◦ ∇ R f ( x, t ) = S n − 1 f ( x + yR ) dy . ω n − 1 R n − 1 Mathematical models for cell movementPart I – p. 42

  60. Keller-Segel Models Define the non-local gradient 1 � ◦ ∇ R f ( x, t ) = S n − 1 f ( x + yR ) dy . ω n − 1 R n − 1 Then the Hillen-Schmeiser-Painter model ◦ � � ∂ t ρ = ∇ · ∇ ρ − χρ ∇ R S , has global existence of solutions. Mathematical models for cell movementPart I – p. 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend