mathematical general relativity
play

Mathematical general relativity Gantumur Tsogtgerel McGill - PowerPoint PPT Presentation

Mechanics Electrodynamics Gravitation Winter school in pure and applied math Mathematical general relativity Gantumur Tsogtgerel McGill University 8-10 January 2010 Mechanics Electrodynamics Gravitation Harmonic oscillator 3 v = x


  1. Mechanics Electrodynamics Gravitation Winter school in pure and applied math Mathematical general relativity Gantumur Tsogtgerel McGill University 8-10 January 2010

  2. Mechanics Electrodynamics Gravitation Harmonic oscillator 3 v = − x ˙ x = − x ¨ 2 or x = v ˙ 1 d dt ( x 2 + v 2 ) = 2 x ˙ x + 2 v ˙ v 0 = 2 xv − 2 vx = 0 � 1 x ( 0 ) 2 + v ( 0 ) 2 = C � 2 ⇓ x ( t ) 2 + v ( t ) 2 = C � 3 � 3 � 2 � 1 0 1 2 3

  3. Mechanics Electrodynamics Gravitation Physical pendulum 3 v = − sin x ˙ x = − sin x ¨ or x = v ˙ 2 1 d dt (− 2 cos x + v 2 ) = 2 ( sin x ) ˙ x + 2 v ˙ v = 2 ( sin x ) v − 2 v sin x 0 = 0 � 1 − 2 cos x ( 0 ) + v ( 0 ) 2 = C � 2 ⇓ − 2 cos x ( t ) + v ( t ) 2 = C � 3 � 3 � 2 � 1 0 1 2 3

  4. Mechanics Electrodynamics Gravitation Physical pendulum 6 v = − sin x ˙ x = − sin x ¨ or 4 x = v ˙ 2 d dt (− 2 cos x + v 2 ) = 2 ( sin x ) ˙ x + 2 v ˙ v = 2 ( sin x ) v − 2 v sin x 0 = 0 � 2 − 2 cos x ( 0 ) + v ( 0 ) 2 = C � 4 ⇓ − 2 cos x ( t ) + v ( t ) 2 = C � 6 � 6 � 4 � 2 0 2 4 6

  5. Mechanics Electrodynamics Gravitation Constrained pendulum x + x = 0 ¨ d · x = 0 where d ∈ R 2 . For any y ∈ R 2 , x = ( I − dd T ) y satisfies d · x = 0 . We have ( I − dd T )( ¨ y + y ) = 0 Let d = e 2 . Then y 1 + y 1 = 0 ¨ but no equation for y 2 ! x does not depend on y 2 , so y 2 = y 2 ( t ) can be anything, e.g., take y 2 = y 1

  6. Mechanics Electrodynamics Gravitation Maxwell’s equations ∂ t B = − ∇ × E , ∇ · B = 0, ∂ t E = ∇ × B , ∇ · E = 0. ∇ · B = 0 ⇒ B = ∇ × A ∂ t B = − ∇ × E ⇒ ∇ × ( ∂ t A + E ) = 0 ⇒ ∂ t A + E = − ∇ ϕ C := ∂ t ( ∇ · A ) + ∆ϕ = 0, − ∂ t ( ∂ t A + ∇ ϕ ) = ∇ × ∇ × A E := ∂ 2 ∇ × ∇ × A = ∇ ( ∇ · A ) − ∆A ⇒ t A − ∆A + ∇ ( ∂ t ϕ + ∇ · A ) = 0 ∂ t C = ∇ · ∂ 2 t A + ∆∂ t ϕ ∇ · E = ∇ · ∂ 2 t A − ∇ · ∆A + ∇ · ∇ ∂ t ϕ + ∇ · ∇ ( ∇ · A ) = ∂ t C

  7. Mechanics Electrodynamics Gravitation Gauge freedom � ∂ 2 [ ∂ t ( ∇ · A ) + ∆ϕ ] t = 0 = 0, t A − ∆A + ∇ ( ∂ t ϕ + ∇ · A ) = 0 � ∂ t ( ∇ · A ) + ∆ϕ = 0 ⇒ B = ∇ × A , − E = ∇ ϕ + ∂ t A A ′ = A + ∇ λ ∇ × A ′ = ∇ × A + ∇ × ∇ λ = B ⇒ ϕ ′ = ϕ − ∂ t λ ∂ t A ′ + ∇ ϕ ′ = ∂ t A + ∂ t ∇ λ + ∇ ϕ − ∇ ∂ t λ = − E ⇒ ∂ t ϕ ′ + ∇ · A ′ = ∂ t ϕ − ∂ 2 t λ + ∇ · A + ∆λ ∂ t ϕ ′ + ∇ · A ′ = 0 ∂ 2 t λ − ∆λ = ∂ t ϕ + ∇ · A ⇒

  8. Mechanics Electrodynamics Gravitation Einstein’s equations The Lorentzian manifold ( M , g ) satisfies Ric ( g ) = 0. ( E ) Suppose M = R × Σ , each Σ t = { t } × Σ is spacelike. On each Σ t , one has g + ( tr g K ) 2 = 0, R ( g ) − | K | 2 ( C ) div g K − d ( tr g K ) = 0. Conversely, if ( C ) holds on Σ 0 , and ( E ) holds in M , then ( C ) holds for all Σ t . Ric ( g ) = � g + N ( ∂ g , ∂ g ) + ∂ � x α .

  9. Mechanics Electrodynamics Gravitation Einstein’s equations • Special solutions: Minkowski, Schwarzschild, de Sitter, Friedmann, Kerr, ... • Local existence for smooth initial data: Choquet-Bruhat ’52 • Incompleteness theorems: Penrose, Hawking ∼ ’60 • Unique maximal development: Choquet-Bruhat, Geroch ’69 • Local existence for initial metric in H 5 / 2 + ǫ : Hugh, Kato, Marsden ’74 • Nonlinear stability of Minkowski space: Christodoulou, Klainerman ∼ ’90 • Local existence for initial metric in H 2 + ǫ : Klainerman, Rodnianski ∼ ’00 • Black hole formation in vacuum: Christodoulou ’08

  10. Mechanics Electrodynamics Gravitation Black hole stability problem Prove that any nearby solution to a Kerr solution will stay close and asymptotically converge to a Kerr solution. Progress: • Linear wave equations on Kerr background: Rodnianski, Dafermos, Blue, Sterbenz, Tataru, ... • Local uniqueness of the Kerr family: Klainerman, Alexakis, Ionescu

  11. Mechanics Electrodynamics Gravitation Einstein’s constraint equations g + ( tr g K ) 2 = 0, R ( g ) − | K | 2 div g K − d ( tr g K ) = 0. • Positive mass theorem: Schoen, Yau, Witten ∼ ’80 • Conformal method: Lichnerowisz, York, Isenberg, Maxwell, ... • Riemannian Penrose inequality: Huisken, Ilmanen, Bray ’97-99 • Gluing: Corvino, Schoen, ...

  12. Mechanics Electrodynamics Gravitation Books • S EAN C ARROLL . Spacetime and Geometry: An Introduction to General Relativity • R OBERT W ALD . General Relativity • N ORBERT S TRAUMANN . General Relativity: With Applications to Astrophysics • A LAN R ENDALL . Partial Differential Equations in General Relativity • D EMETRIOS C HRISTODOULOU . Mathematical Problems of General Relativity • Y VONNE C HOQUET -B RUHAT . General Relativity and the Einstein Equations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend