matching heavy quark fields in qcd and hqet
play

Matching heavy-quark fields in QCD and HQET Andrey Grozin - PowerPoint PPT Presentation

Matching heavy-quark fields in QCD and HQET Andrey Grozin A.G.Grozin@inp.nsk.su Budker Institute of Nuclear Physics Novosibirsk HQET = non-abelian BlochNordsieck Electron + soft photons (real and virtual) Bloch, Nordsieck (1937) see


  1. Matching heavy-quark fields in QCD and HQET Andrey Grozin A.G.Grozin@inp.nsk.su Budker Institute of Nuclear Physics Novosibirsk

  2. HQET = non-abelian Bloch–Nordsieck Electron + soft photons (real and virtual) Bloch, Nordsieck (1937) see Bogoliubov, Shirkov § 46

  3. HQET = non-abelian Bloch–Nordsieck Electron + soft photons (real and virtual) Bloch, Nordsieck (1937) see Bogoliubov, Shirkov § 46 Heavy quark + soft gluons and light quarks, antiquarks (real and virtual): HQET (1990)

  4. HQET = non-abelian Bloch–Nordsieck Electron + soft photons (real and virtual) Bloch, Nordsieck (1937) see Bogoliubov, Shirkov § 46 Heavy quark + soft gluons and light quarks, antiquarks (real and virtual): HQET (1990) QED electron propagator in the IR ≈ Bloch–Nordsieck electron propagator, see Bogoliubov, Shirkov § 50.3

  5. HQET = non-abelian Bloch–Nordsieck Electron + soft photons (real and virtual) Bloch, Nordsieck (1937) see Bogoliubov, Shirkov § 46 Heavy quark + soft gluons and light quarks, antiquarks (real and virtual): HQET (1990) QED electron propagator in the IR ≈ Bloch–Nordsieck electron propagator, see Bogoliubov, Shirkov § 50.3 Here we shall discuss this relation in detail, including corrections

  6. HQET p = mv + k

  7. HQET p = mv + k QCD: Q HQET: Q v = / vQ v � 1 Q v iv · DQ v + 1 � L = ¯ 2 m ( O k + C m ( µ ) O m ( µ )) + O m 2 Matching S -matrix elements Reparametrization invariance v → v + δv

  8. HQET p = mv + k QCD: Q HQET: Q v = / vQ v � 1 Q v iv · DQ v + 1 � L = ¯ 2 m ( O k + C m ( µ ) O m ( µ )) + O m 2 Matching S -matrix elements Reparametrization invariance v → v + δv QCD operator � 1 � O ( µ ) + 1 O ( µ ) = C ( µ ) ˜ � B i ( µ ) ˜ O i ( µ ) + O 2 m m 2 i Matching on-shell matrix elements

  9. Q via Q v , . . . Here we shall consider Q Matrix elements of Q are not measurable, why bother?

  10. Q via Q v , . . . Here we shall consider Q Matrix elements of Q are not measurable, why bother? Lattice ◮ QCD a ≪ 1 /m ◮ HQET a ≪ 1 / Λ MS HQET heavy-quark propagator in the Landau gauge ⇒ QCD propagator

  11. Tree level � 1 + i / D ⊥ � Q ( x ) = e − imv · x 2 m + · · · Q v ( x ) C.L.Y. Lee (1991) K¨ orner, Thompson (1991) Mannel, Roberts, Ryzak (1992)

  12. Matching Matching � 1 / 2 u ( p ) Z os � < 0 | Q 0 | Q ( p ) > = Q � 1 / 2 � ˜ Z os < 0 | Q v 0 | Q ( p ) > = u v ( k ) Q

  13. Matching Matching � 1 / 2 u ( p ) Z os � < 0 | Q 0 | Q ( p ) > = Q � 1 / 2 � ˜ Z os < 0 | Q v 0 | Q ( p ) > = u v ( k ) Q Foldy–Wouthuysen transformation � k 2 � �� 1 + / k u ( mv + k ) = 2 m + O u v ( k ) m 2

  14. Matching � 1 � � 1 + i / D ⊥ � �� z 1 / 2 Q 0 ( x ) = e − imv · x Q v 0 ( x ) + O 0 2 m m 2 Q ( g ( n l +1) , a ( n l +1) z 0 = Z os ) 0 0 Q ( g ( n l ) , a ( n l ) ˜ Z os ) 0 0

  15. Matching � 1 � � 1 + i / D ⊥ � �� z 1 / 2 Q 0 ( x ) = e − imv · x Q v 0 ( x ) + O 0 2 m m 2 Q ( g ( n l +1) , a ( n l +1) z 0 = Z os ) 0 0 Q ( g ( n l ) , a ( n l ) ˜ Z os ) 0 0 Reparametrization invariance Luke, Manohar (1992)

  16. Matching � 1 � � 1 + i / D ⊥ � �� z 1 / 2 Q 0 ( x ) = e − imv · x Q v 0 ( x ) + O 0 2 m m 2 Q ( g ( n l +1) , a ( n l +1) z 0 = Z os ) 0 0 Q ( g ( n l ) , a ( n l ) ˜ Z os ) 0 0 Reparametrization invariance Luke, Manohar (1992) Renormalized decoupling Z Q ( α ( n l ) ˜ ( µ ) , a ( n l ) ( µ )) s z ( µ ) = z 0 Z Q ( α ( n l +1) ( µ ) , a ( n l +1) ( µ )) s

  17. m c = 0 ◮ ˜ Z os Q = 1 ◮ Z os Q (single scale m ): Melnikov, van Ritbergen (2000) ◮ ˜ γ Q : Melnikov, van Ritbergen (2000); γ Q : Chetyrkin, Grozin (2003) ◮ γ Q : Tarasov (1982); γ Q : Larin, Vermaseren (1993) Decoupling: Chetyrkin, Kniehl, Steinhauser (1998)

  18. m c = 0 ◮ ˜ Z os Q = 1 ◮ Z os Q (single scale m ): Melnikov, van Ritbergen (2000) ◮ ˜ γ Q : Melnikov, van Ritbergen (2000); γ Q : Chetyrkin, Grozin (2003) ◮ γ Q : Tarasov (1982); γ Q : Larin, Vermaseren (1993) Decoupling: Chetyrkin, Kniehl, Steinhauser (1998) Melnikov, van Ritbergen obtained ˜ Z Q from Z os Q and finiteness of z ( µ )

  19. Result α ( n l ) ( µ ) s z ( µ ) = 1 − (3 L + 4) C F 4 π � 2 � α ( n l ) ( µ ) z 22 L 2 + z 21 L + z 20 s � � + C F 4 π � 3 � α ( n l ) ( µ ) z 33 L 3 + z 32 L 2 + z 31 L + z 30 s � � + C F + · · · 4 π Depends on a ( µ ) starting from 3 loops

  20. Large β 0 � β dβ � γ ( β ) 2 β − γ 0 � z ( µ ) = 1 + β 2 β 0 0 � 1 � ∞ + 1 � du e − u/β S ( u ) + O β 2 β 0 0 0

  21. Large β 0 � β dβ � γ ( β ) 2 β − γ 0 � z ( µ ) = 1 + β 2 β 0 0 � 1 � ∞ + 1 � du e − u/β S ( u ) + O β 2 β 0 0 0 γ Q = − 2 β γ ( β ) = γ Q − ˜ F ( − β, 0) β 0 (1 + β )(1 + 2 3 β ) β = 2 C F β 0 B (2 + β, 2 + β )Γ(3 + β )Γ(1 − β ) γ Q − ˜ γ Q is gauge invariant at 1 /β 0

  22. Borel image S ( u ) = F (0 , u ) − F (0 , 0) u � � e ( L +5 / 3) u Γ( u )Γ(1 − 2 u ) (1 − u 2 ) − 1 = − 6 C F Γ(3 − u ) 2 u

  23. Borel image S ( u ) = F (0 , u ) − F (0 , 0) u � � e ( L +5 / 3) u Γ( u )Γ(1 − 2 u ) (1 − u 2 ) − 1 = − 6 C F Γ(3 − u ) 2 u ∆¯ ∆ z ( µ ) = 3 Λ 2 m

  24. Borel image S ( u ) = F (0 , u ) − F (0 , 0) u � � e ( L +5 / 3) u Γ( u )Γ(1 − 2 u ) (1 − u 2 ) − 1 = − 6 C F Γ(3 − u ) 2 u ∆¯ ∆ z ( µ ) = 3 Λ 2 m z ( µ ) is gauge invariant at 1 /β 0 Expand and integrate

  25. Numerically � 2 α (4) � α (4) z ( m ) = 1 − 4 s ( m ) s ( m ) − (16 . 6629 − 4 . 5421) 3 π π � 3 � α (4) s ( m ) − (153 . 4076 + 42 . 6271 − 61 . 5397) π � 4 � α (4) s ( m ) − (1953 . 4013 + · · · ) + · · · π � 2 � 3 � � α (4) α (4) α (4) = 1 − 4 s ( m ) s ( m ) s ( m ) − 12 . 1208 − 134 . 4950 3 π π π � 4 � α (4) s ( m ) − (1953 . 4013 + · · · ) + · · · π

  26. Gauge dependence of QED propagators µν ( k ) = 1 � g µν − k µ k ν � D 0 k 2 k 2 S ( x ) = S L ( x )

  27. Gauge dependence of QED propagators µν ( k ) = 1 � g µν − k µ k ν � D 0 + ∆( k ) k µ k ν k 2 k 2 0 ( ˜ ∆( x ) − ˜ S ( x ) = S L ( x ) e − ie 2 ∆(0)) ∆( k ) e − ikx d d k � ˜ ∆( x ) = (2 π ) d

  28. Gauge dependence of QED propagators µν ( k ) = 1 � g µν − k µ k ν � D 0 + ∆( k ) k µ k ν k 2 k 2 0 ( ˜ ∆( x ) − ˜ S ( x ) = S L ( x ) e − ie 2 ∆(0)) ∆( k ) e − ikx d d k � ˜ ∆( x ) = (2 π ) d a 0 ˜ ∆( k ) = ∆(0) = 0 in dim. reg. ( k 2 ) 2

  29. Gauge dependence of QED propagators µν ( k ) = 1 � g µν − k µ k ν � D 0 + ∆( k ) k µ k ν k 2 k 2 0 ( ˜ ∆( x ) − ˜ S ( x ) = S L ( x ) e − ie 2 ∆(0)) ∆( k ) e − ikx d d k � ˜ ∆( x ) = (2 π ) d a 0 ˜ ∆( k ) = ∆(0) = 0 in dim. reg. ( k 2 ) 2 Landau, Khalatnikov (1955) Fradkin (1955) Zumino (1960) Fukuda, Kubo, Yokoyama (1980) Bogoliubov, Shirkov § 45.5

  30. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x )

  31. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4

  32. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4 � ε � − µ 2 x 2 = σ L ( x ) + a ( µ ) α ( µ ) e γ E ε Γ( − ε ) 4 π 4

  33. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4 � ε � − µ 2 x 2 = σ L ( x ) + a ( µ ) α ( µ ) e γ E ε Γ( − ε ) 4 π 4 = log Z ψ + σ r

  34. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4 � ε � − µ 2 x 2 = σ L ( x ) + a ( µ ) α ( µ ) e γ E ε Γ( − ε ) 4 π 4 = log Z ψ + σ r log Z ψ ( α, a ) = log Z L ( α ) − a α 4 πε

  35. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4 � ε � − µ 2 x 2 = σ L ( x ) + a ( µ ) α ( µ ) e γ E ε Γ( − ε ) 4 π 4 = log Z ψ + σ r log Z ψ ( α, a ) = log Z L ( α ) − a α 4 πε γ ψ ( α, a ) = 2 a α 4 π + γ L ( α ) d log( a ( µ ) α ( µ )) /d log µ = − 2 ε exactly γ L ( α ) starts from α 2

  36. Gauge dependence of Z ψ , γ ψ Massless electron S ( x ) = S 0 ( x ) e σ ( x ) � ε e 2 � − x 2 0 σ ( x ) = σ L ( x ) + a 0 Γ( − ε ) (4 π ) d/ 2 4 � ε � − µ 2 x 2 = σ L ( x ) + a ( µ ) α ( µ ) e γ E ε Γ( − ε ) 4 π 4 = log Z ψ + σ r log Z ψ ( α, a ) = log Z L ( α ) − a α 4 πε γ ψ ( α, a ) = 2 a α 4 π + γ L ( α ) d log( a ( µ ) α ( µ )) /d log µ = − 2 ε exactly γ L ( α ) starts from α 2 Some Russian paper in the second half of the 1950s ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend