maker approach to product innovation
play

Maker Approach to Product Innovation BRINGING TO LIFE WEARABLE / IoT - PowerPoint PPT Presentation

Maker Approach to Product Innovation BRINGING TO LIFE WEARABLE / IoT IDEAS With RAPID PROTOTYPING using Open HW and SW MOE T MOE TANABIAN ANABIAN VP of Engineering | Head of IoT Innovation Lab Samsung Electronics ABOUT ME MOE TANABIAN Vice


  1. Maker Approach to Product Innovation BRINGING TO LIFE WEARABLE / IoT IDEAS With RAPID PROTOTYPING using Open HW and SW MOE T MOE TANABIAN ANABIAN VP of Engineering | Head of IoT Innovation Lab Samsung Electronics

  2. ABOUT ME MOE TANABIAN Vice President of Engineering, Head of Smart Things IoT Innovation Lab Samsung Electronics, San Jose, CA 16 years of industry experience in building and launching CE, Mobility and Wireless products in companies such as Samsung, Amazon, Nortel 2 �

  3. BACKUP ¡SLIDES ¡ ¡ Product Innovation – The Maker Way Silicon Valley way of Innovation by Tinkering, Hacking and Making 3 ¡

  4. WHAT IS THIS “MAKER” THING? 4 �

  5. FACT CT Visionary products are NOT envisioned overnight by product visionaries 5 �

  6. THEN HOW ARE GREAT NEW PRODUCTS BORN? Lets look at How Silicon Valley (and our lab) Innovate…

  7. It all starts with a burning desire, a missing piece – WHY CAN’T WE DO “THIS” 7 �

  8. And–is this a material addressable market with growth potential? & can it be built and can Samsung ship it and make it a business? 8 �

  9. If all YES , Then we get together start working on it 9 �

  10. Quick guideline for where to look for potentials and pain points Project selection checkbox � 1. Focus ¡on ¡exploi0ng ¡Experience ¡Gap ¡ ¡ 2. Select ¡opportuni0es ¡with ¡high ¡demand ¡that ¡ Samsung ¡can ¡fulfill ¡ 3. Align ¡with ¡HQ ¡ ¡ Combine ¡Design ¡and ¡Technology ¡address ¡the ¡ Experience ¡Gap: ¡ ¡ i. Dras0cally ¡simple ¡& ¡Intui0ve ¡UX ¡ ¡ ii. Beau0ful ¡ Visual ¡Design , ¡Form ¡Factor ¡and ¡ ID ¡ iii. Well ¡designed ¡ So7ware ¡and ¡ Hardware ¡ ¡ iv. Intelligence ¡ and ¡ Machine ¡Learning ¡ 10 �

  11. Quick guideline for where to look for potentials and pain points Projected U.S. Biofuel Best ¡UI ¡is ¡ ¡ Superb ¡SIMPLE ¡ MulA-­‑Device ¡ Source: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: Experiences ¡ Experiences ¡ No ¡UI ¡ Seamless D2D Context, Machine Drastically Simple experiences Learning – to UX – Attractive , across Samsung enable minimal to Natural design devices No UI UX 11 �

  12. Then we do the Initial coarse designs 12 �

  13. AND THEN WE MAKE STUFF 13 �

  14. And we write code… 14 �

  15. Make more stu ff … 15 �

  16. Write more code… 16 �

  17. Test again the design for UX, and Technical… 17 �

  18. We do this cycle a few (~6-15) times Make ¡ � ¡ Test ¡ � ¡ Validate ¡ (each taking 2-3 weeks) 18 �

  19. And fj nally…. 19 �

  20. Then we get some sleep and rest (Once in a while!) 20 �

  21. It’s a collaborative process with Samsung headquarters 21 �

  22. And celebrate when we have completed the project 22 �

  23. So, what is the CORE of how we do things? 23 �

  24. TENETS OF SUCCESSFUL MAKING How do we do this? 1 1 2 2 3 3 Mix of Design & Rapid Iterations Duality of skills in x- Technology Functional Small Teams

  25. 1 1 Mix of Design and Technology in thinking & Making 25 �

  26. 2 2 Rapid Iteration over Ideate / Make / Pivot 26 �

  27. 2 2 Also Worth reading 27 �

  28. Tenet ¡3: ¡x-­‑FuncAonal ¡Team, ¡x-­‑Skill ¡Learning ¡ 3 3 Duality of Skills in the team 28 �

  29. Building WEARABLE / IoT Products With RAPID PROTOTYPING using Open HW and SW 29 ¡

  30. OUTLINE WEARABLES: Design Success Factors Connectivity & Sensors Energy & Battery Consumption Reference Design for Wearable Experiments 30 �

  31. CHARACTERISTICS OF WEARABLES • Always ready • Senses & reacts; can act proactively • Communication tool • Respects wearer’s attention • Intimate & personal 31 �

  32. UX: COST VS BENEFITS 32 �

  33. SOCIAL WEIGHT SW = CL + PP + SC CL → cognitive load PP → physical presence SC → social convention Source: A. ¡Toney, ¡B. ¡Mulley, ¡B. ¡H. ¡Thomas, ¡and ¡W. ¡Piekarski, ¡“Social ¡weight: ¡designing ¡to ¡minimise ¡the ¡social ¡consequences ¡arising ¡from ¡technology ¡use ¡by ¡the ¡mobile ¡professional,” ¡Personal ¡and ¡Ubiquitous ¡ Compu0ng, ¡vol. ¡7, ¡no. ¡5, ¡pp. ¡309–320, ¡2003. 33 �

  34. SOCIAL WEIGHT CL: • CL: ••• CL: •••••• PP: • PP: •• PP: ••• SC: • � SC: • � SC: •• � CL: C ognitive L oad -- PP : P hysical P resence -- SC: S ocial C onvention 34 �

  35. SOCIAL WEIGHT CL: ••• CL: ••• CL: ? PP: ••• PP: •••• PP: •••••••••• SC: ••• � SC: ••••• � SC: •••••••••••••••••••• CL: C ognitive L oad -- PP : P hysical P resence -- SC: S ocial C onvention 35 �

  36. OTHER UX CHALLENGES IN WEARABLES Integration with other platforms & devices Discoverability of functionality How many wearables/person? Turning it o ff and showing that state: e.g. Glass vs Autographer Cost 36 �

  37. OUTLINE WEARABLES: Design Success Factors CONNECTIVITY & SENSORS Energy & Battery Consumption Reference Design for Wearable Experiments 37 �

  38. CONNECTIVITY AND SENSORS IN WEARABLES – SHORT RANGE CONNECTIVITY OPTIONS Voice ¡ Data ¡ Audio ¡ Video ¡ State ¡ Bluetooth ¡ Y ¡ Y ¡ Y ¡ N ¡ N ¡ BLE ¡ N ¡ N ¡ N ¡ N ¡ Y ¡ Wi-­‑Fi ¡ Y ¡ Y ¡ Y ¡ Y ¡ N ¡ Wi-­‑Fi ¡Direct ¡ Y ¡ Y ¡ Y ¡ N ¡ N ¡ ZigBee ¡ N ¡ N ¡ N ¡ N ¡ Y ¡ ANT ¡ N ¡ N ¡ N ¡ N ¡ Y ¡ State: ¡ ¡ Low ¡ bandwidth , ¡ ¡ Low ¡ Latency , ¡ ¡ Low ¡ Power ¡Data ¡ 38 � Source: IEEE

  39. CONNECTIVITY AND SENSORS IN WEARABLES – CONNECTIVITY - BLE It’s good at small discrete Data transfers. It has new Radio, new Protocol stack and new Pro fj le architecture • Asynchronous connectionless MAC – for low Latency fast transactions (~3ms from start to fj nish) • Very low (lowest) cost to implement 11:24AM ¡ • Range: ~150m, Max current: 15mA NW ¡Available ¡ • Output power: 10mW, Sleep current: ~1uA 73.0F ¡ Pause ¡ || ¡ • Data speed: 1Mbps (Optimized for States exchange) 49.6 ¡M/h ¡ ¡ BLE is optimized for linking things that have “Data” and “Web Services” that want this “Data” ¡ 39 � Source: IEEE

  40. CONNECTIVITY AND SENSORS IN WEARABLES – CONNECTIVITY - BLE • 2.4GHz ISM band • Low complexity: 1 Packet format, 2 PDU types (Adv., Data) • Master/Slave communication model 3 Advertising Channels and 37 Data Channels (2MHz each) 40 � Source: IEEE

  41. CONNECTIVITY AND SENSORS IN WEARABLES – CONNECTIVITY - BLE Time (us) Master Tx Radio Active (us) Slave Tx 176 ¡ ADV_DIRECT_IND ¡ 0 ¡ CONNECT_REQ ¡ 352 ¡ 326 ¡ Empty ¡Packet ¡ 80 ¡ 1928 ¡ Aeribute ¡Protocol ¡ 144 ¡ 2158 ¡ Handle ¡Valid ¡Indica0on ¡ Empty ¡Packet ¡ACK ¡ 80 ¡ 2452 ¡ 96 ¡ LL_TERMINATE_IND ¡ 2682 ¡ Empty ¡Packet ¡ACK ¡ 80 ¡ 2928 ¡ 41 � Source: IEEE

  42. CONNECTIVITY AND SENSORS IN WEARABLES – CONNECTIVITY - BLE How does BLE achieve Low Energy? • Assume a 3ms transaction, Tx Power=15mW, • For a 1.5v Battery à 10mA • For a 1.5v Battery, 180mAh à 10mA à 18Hr à 64800 sec à 21.6M Transactions • Assume Sensor Tx every 10 minutes à 1440/Day à 15000 Days à 40yr • This far exceeds the life of the Battery and even the Sensor itself 42 � Source: IEEE

  43. CONNECTIVITY AND SENSORS IN WEARABLES – CONNECTIVITY – OTHER (WI-FI, ZIGBEE, ETC) There are other short range wireless technologies that can potentially be built in to Wearable devices: • Wi-Fi is high bandwidth and can enable more complex use cases. The drawbacks are: • it’s relatively expensive • and consumes MUCH more power • Zigbee is another light-weight wireless technology: • BLE is cheaper and consumes less power • Zigbee is not present on smartphones and PC’s BLE is seems to be winning the battle of the Wearables – especially the devices that are often used in pair with a Smartphone 43 �

  44. CONNECTIVITY AND SENSORS IN WEARABLES – SENSORS – ACCELOROMETER (MEMS) • Accelerometer senses acceleration (movement) across 1, 2 or 3 axis • Multiple ways to detect acceleration. Here is a few: • Gravity: Heat sensors and water bubble • Capacitive: Capacitance change as a function of movement • Piezoelectric: Piezoelectric sensing as a function of movement 44 �

  45. CONNECTIVITY AND SENSORS IN WEARABLES – SENSORS – ACCELOROMETER PROTOTYPING EXAMPLE 3pl Axis Accelerometer – ADXL362 • 3-Axis • Ultralow Power • SPI Digital Interface • Wide Voltage Range: 1.6 V to 3.5 V • Adjustable Threshold for Motion Activation • Measurement Ranges Selectable via SPI Command 45 �

  46. CONNECTIVITY AND SENSORS IN WEARABLES – SENSORS – ACCELOROMETER PROTOTYPING EXAMPLE 3pl Axis Accelerometer – ADXL362 46 �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend