magnetism electronic transport and
play

Magnetism, Electronic Transport and Magneto-Structural Coupling in Sr - PowerPoint PPT Presentation

Magnetism, Electronic Transport and Magneto-Structural Coupling in Sr 2 IrO 4 Ashim Kr. Pramanik School of Physical Sciences Jawaharlal Nehru University JNU, Frustrated Magnetism, Feb 13, 2015 Our Group at JNU q Work in


  1. Magnetism, Electronic Transport and Magneto-Structural Coupling in Sr 2 IrO 4 Ashim Kr. Pramanik School of Physical Sciences Jawaharlal Nehru University JNU, Frustrated Magnetism, Feb 13, 2015

  2. Our ¡Group ¡at ¡JNU ¡ q Work in experimental condensed matter physics. q Most work in low temperature regime. q Do prepare materials, characterize them and study physical properties. q At present group of 7 people: 3 Ph.D students and 3 M.Sc students. q Transition metal oxides (4d & 5d) based materials.

  3. Sr 2 IrO 4 ¡(214) ¡: ¡Overview ¡ q Sr 2 2+ Ir 4+ O 4 2- is 5 d based Transition Metal Oxide q Electronic configuration: Ir 4+ 4 ƒ 14 5 d 5 q Significant Crystal Field effect Low spin state e g t 2g q Half filled t 2g band. q Extended nature of 5 d orbitals. q Reduced electronic correlation effect than 3 d and 4 d counterpart. q Therefore, 5d oxides expected to be metallic. q Heavy character of Ir (77) atom. q Significant spin-orbit coupling (SOC) effect ( ∝ z 4 , atomic number) q Comparable energy scale of Coulomb interaction and SOC ∼ 0.5 eV

  4. Sr 2 IrO 4 (214) : Structural Overview Importance ¡of ¡Structure ¡ q Member of Ruddlesden-Popper series Sr n+1 Ir n O 3n+1 with n = 1 . θ Oct ¡ q Layered (K 2 NiF 4 ) structure. q Crystalizes in tetragonal structure Space group : I4 1 /acd . q Alternate tilting of IrO 6 octahedra along c -axis ( θ Oct ∼ 11 o ) . q Iso-structural with La 2 CuO 4 and Sr 2 RuO 4 q Possible superconductivity !!! Wang, PRL, 106, 136402 (2011) Yang, PRB 89, 094518 (2014)

  5. Sr 2 IrO 4 (214) : Magnetic Overview Ye, PRB, 87, 140406, (2013) Cao, PRB, 57, 11039, (1998) q Canted Antiferromagnet with T N ∼ 240 K. q Structural distortion induced Dzyaloshinsky-Moriya (DM) interaction. q Weak ferromagnetism with much lower moment than spin-only value (1 µ B /f.u) for S = ½

  6. Sr 2 IrO 4 (214) : Electronic Transport Sr 2 IrO 4 Korneta, PRB, 82, 115117 (2010) Sr 2 RhO 4 Perry, JPCM, 8, 175 (2006)

  7. Sr 2 IrO 4 (214) : Insulating behaviour J eff Mott Insulator : Electronic correlation driven q Interplay between SOC, W and U gives novel ground state. q SOC splits t 2g band onto J eff = 1/2 and J eff = 3/2 band. q J eff = 1/2 band is half-filled and narrow. q Moderate U can lead to Mott gap. B. J. Kim, PRL 101, 076402 (2008); Science, 323, 1329 (2009)

  8. Sr 2 IrO 4 (214) : Insulating behaviour Slater Insulator : Magnetic Order driven Time resolved optical study STM/STS investigation. Hsieh, PRB, 86, 035128(2012) Li, Scientific Reports, 3, 3073 (2013)

  9. Sr 2 IrO 4 (214) : Material Synthesis q Single-phase polycrystalline material prepared using solid state method. q Materials are characterized using XRD and allied Rietveld analysis. q Sample crystallizes in tetragonal structure with I4/acd symmetry. q Lattice parameters; a = 5.4980(2) Å and c = 25.779(1) Å. 1.5 T = 298 K 3 a. u.) Observed 1.0 Calculated Difference Intensity (10 0.5 0.0 10 20 30 40 50 60 70 80 90 2 θ (Deg) Bhatti, AKP , JPCM, 27, 016005 (2014)

  10. Sr 2 IrO 4 (214) : Magnetic Properties 0.06 q Weak FM transition around 238 K (dM/dT). T = 5 K 0.04 q Steep decrease in M ZFC (T) below ∼ 95 K. M ( µ B /f.u) 0.02 0.00 q Curie-Weiss behaviour in limited temperature. -0.02 -0.04 q Estimated θ P = 233 K and µ eff = 0.56 µ B /f.u. -0.06 -80 -60 -40 -20 0 20 40 60 80 q Expected µ eff = 0.57 and µ H = 0.33 µ B /f.u ( g J = 2/3) H (kOe) 3 200 -3 T = 5 K × 10 H = 10 kOe 2 2 ( µ B /f.u) 2 ZFC 150 FC M (emu/mole) 1 Μ 1.5 100 1.0 3 ) 0 -1 (10 0 2 4 6 8 10 12 14 0.5 50 5 Oe f.u µ B -1 ) χ H/M (10 0.0 150 200 250 300 T (K) 0 0 50 100 150 200 250 300 T (K) Ge, ¡PRB, ¡84, ¡100402 ¡(2011). ¡

  11. Sr 2 IrO 4 (214) : Temperature Dependent Structure q Representative XRD data in PM, FM and low temperature state. q No structural phase transition down to 20 K. 2.0 3 a.u.) 1.5 Intensity (10 1.0 298 K 0.5 200 K 20 K 0.0 10 20 30 40 50 60 70 80 90 2 θ (Deg)

  12. Sr 2 IrO 4 (214) : Temperature Dependent Structure Temperature dependent changes in structural parameters. 5.500 160 (a) T M (a) T c T M T c <Ir-O2-Ir> (Deg) 5.495 159 0 ) 5.490 a (A 5.485 158 Unit Cell IrO 6 Octahedra 5.480 25.795 11.5 (b) (b) 25.790 θ Oct (Deg) 11.0 0 ) 25.785 c (A 10.5 25.780 25.775 10.0 (c) 4.705 (c) 1.980 0 ) d Ir-O2 (A 4.700 c/a 1.975 4.695 4.690 1.970 2.14 780 (d) 2.12 03 ) 0 ) 778 (d) d Ir-O1 (A V (A 2.10 2.08 776 2.06 774 0 50 100 150 200 250 300 0 50 100 150 200 250 300 T (K) T (K)

  13. Sr 2 IrO 4 (214) : Prediction for Magneto-Structural correlation q Magnetism is linked to IrO 6 octahedra distorsion. q α - IrO 6 octahedra distortion angel. q Φ - spin canting angle. q θ - tetragonal distortion parameter. Jackeli, PRL, 102, 017205 (2009)

  14. Sr 2 IrO 4 (214) : Electronic Transport q Resistivity shows insulating behaviour (d ρ /dT < 0). q Resistivity increases by five orders at low temperature. q Electronic transport can be understood using 2D Mott variable range hopping model. 5 10 10 1/3 ρ = ρ 0 exp(T 0 /T) 4 10 8 ρ (Ohm-cm) 3 10 6 ln ρ 2 10 4 T C 1 10 2 T M 0 10 0 0 50 100 150 200 250 300 0.2 0.3 0.4 0.5 0.6 T (K) -1/3 (K -1/3 ) T

  15. Sr 2 IrO 4 (214) : Magneto-transport ( H ) ( 0 ) Δ ρ ρ − ρ Magnetoresistance (MR) = = ( 0 ) ( 0 ) ρ ρ q Positive MR (weak antilocalization) in strong SOC systems, Bi 2 Se 3 , Bi 2 Te 3 , Na 2 IrO 3 films. q Negative MR at low T in VRH regime – weak localization – quantum interference effect – Quadratic field dependence. 5 K 0.00 0.00 150 K 180 K ρ (H) - ρ (0) / ρ (0) -0.01 -0.01 ρ (H) - ρ (0) / ρ (0) -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 0 1 2 3 4 5 6 7 0 10 20 30 40 50 60 70 80 2 (10 8 Oe 2 ) H H (kOe)

  16. Sr 2 IrO 4 (214) : Critical Analysis q Magnetic isotherms across FM transition 0.4 Δ T = 2 K 0.4 T = 218 K 0.3 0.3 -1 ) -1 ) M (emu g M (emu g 0.2 0.2 PM FM T = 238 K 0.1 0.1 2.0 -1 ) 0.0 -1 Oe 0.0 0 50 100 150 200 250 300 0 10 20 30 40 50 1.5 226 K H (kOe) T (K) dM/dH (emu g 1.0 0.5 0.0 0 10 20 30 40 50 H (kOe)

  17. Sr 2 IrO 4 (214) : Critical Analysis 0.09 3D Ising Model 3D Heisenberg Model 0.06 β = 0.325 1/ β β = 0.365 1/ β -1 ) γ = 1.24 0.06 -1 ) γ = 1.386 1/ β (emu g 1/ β (emu g 0.04 0.03 0.02 M M 0.00 0.00 0.0 0.2 0.4 0.6 0.0 0.5 1.0 1.5 1/ γ (10 4 Oe emu -1 g) 1/ γ (H/M) 1/ γ (10 4 Oe emu -1 g) 1/ γ (H/M) 0.16 Mean Field Model β = 0.5 β 0.12 -1 ) γ = 1.0 β (emu g 0.08 M 0.04 0.00 0 2 4 6 8 10 12 14 16 1/ γ (10 4 Oe emu -1 g) 1/ γ (H/M)

  18. Sr 2 IrO 4 (214) : Critical Analysis Modified ¡ArroA ¡plot: ¡ 0.20 β = 0.55 0.16 γ = 1.15 1/ β -1 ) 0.12 1/ β (emu g 0.08 M 0.04 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1/ γ (10 4 Oe emu -1 g) 1/ γ (H/M)

  19. Sr 2 IrO 4 (214) : Critical Analysis Critical Plot Kouvel-Fisher Plot 8 0 0.12 12 -1 ) T C = 225 K -1 (K) -1 (K) T C 4 Oe emu g -3 10 6 0.10 β = 0.5517(1) -1 ) 8 M S (emu g -6 -1 /dT) M S (dM S /dT) 0.08 4 6 -9 -1 (d χ 0 − 1 (10 4 0.06 2 T c = 225 K T c = 225 K T C = 225 K -12 T C 2 β = 0.57(2) χ 0 γ = 1.147(1) 0.04 χ 0 γ = 1.14(3) 0 0 -15 216 220 224 228 232 236 240 216 220 224 228 232 236 240 T (K) T (K) 0.4 T = 226 K 0.3 -1 ) M (emu g Critical isotherm: M ∝ H 1/ δ -1.8 δ = 3.090(2) 0.2 -2.0 Log(M) -2.2 0.1 Log(H) -2.4 3.0 3.5 4.0 4.5 5.0 0.0 0 10 20 30 40 50 H (kOe)

  20. Sr 2 IrO 4 (214) : Critical Analysis 8 218 K Scaling ¡analysis ¡ 220 K 6 222 K -1 ) 10 - β (emu g 224 K -1 ) 4 - β (emu g 226 K 1 M| ε | 228 K M| ε | 2 230 K -( γ + β ) (10 6 Oe) H| ε | 232 K 0.1 0.01 0.1 1 10 0 0 15 30 45 60 -( γ + β ) (10 6 Oe) H| ε | Exponents ¡ β ¡ γ ¡ δ ¡ This ¡Work ¡ 0.55 ¡ 1.15 ¡ 3.03 ¡ Mean ¡Field ¡ 0.5 ¡ 1.0 ¡ 3.0 ¡ 3D ¡Heisenberg ¡ 0.365 ¡ 1.386 ¡ 4.8 ¡ 3D ¡Ising ¡ 0.325 ¡ 1.241 ¡ 4.82 ¡

  21. Sr 2 IrO 4 (214) : Thermal Demagnetization Thermal Demagnetization Δ M : M M ( T ) M ( 0 ) Δ − 3 / 2 Spin-wave (SW) excitation (Bloch) : BT = = M ( 0 ) M ( 0 ) M M ( T ) M ( 0 ) Δ − Δ 3 / 2 CT exp( ) Stoner single-particle (SP) excitation: = = − M ( 0 ) M ( 0 ) k T B Δ M Total = Δ M SW + Δ M SP

  22. Sr 2 IrO 4 (214) : Magnetocaloric Effect (MCE) ( ) M T , H δ ⎛ ⎞ H Magnetic Entropy change: Δ S M (T,H) = S M (T,H) – S M (T,0) = dH ∫ ⎜ ⎟ 0 T δ ⎝ ⎠ H Relative cooling power: Δ S M (T,H) × δ T FWHM 0.8 6.0 7 T 5 K - 300 K 5 T 0.6 -1 ) 4.5 3 T -1 K 2 T M (emu/g) -2 Jkg 3.0 1 T 0.4 - Δ S (10 1.5 0.2 0.0 0.0 -1.5 0 20 40 60 80 0 50 100 150 200 250 300 T (K) H (kOe)

  23. Sr 2 IrO 4 (214) : Field dependence of MCE Nice linear field dependence For both Δ S M and RCP . 0.060 Experimental data Linear dependence of -1 ) Linear fit of data 0.045 -1 K Δ S M and (H/T c ) 2/3 shows mean - Δ S M (J kg 0.030 Field nature. 0.015 0.000 0.02 0.04 0.06 0.08 0.10 2/3 (H/T C )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend