ma rk et v alue of life insuran e contra ts under sto
play

Ma rk et V alue of Life Insurane Contrats under Sto hasti - PowerPoint PPT Presentation

Ma rk et V alue of Life Insurane Contrats under Sto hasti Interest Rates and Default Risk Ca role Berna rd Olivier Le Courtois F ranois Quitta rd-Pinon Universit y of Ly on 1 E.M. Ly on A Sho rt A tua


  1. Ma rk et V alue of Life Insuran e Contra ts under Sto hasti Interest Rates and Default Risk Ca role Berna rd Olivier Le Courtois F ran�ois Quitta rd-Pinon Universit y of Ly on 1 E.M. Ly on

  2. A Sho rt A tua rial Bibliography ... Briys and de V a renne [1993, 1997℄ Grosen and J�rgensen [1997, 2000, 2002℄ T ansk anen and Lukk a rinen [2003℄ ➠ J�rgensen [2004℄ ➠ ➠ ➠

  3. ...Complemented b y some Majo r Referen es from Finan e F o rtet [1943℄ Merton [1974℄ Heath, Ja rro w and Mo rton [1992℄ ➠ Longsta� and S hw a rtz [1995℄ ➠ Collin-Dufresne and Goldstein [2001℄ ➠ ➠ ➠

  4. Capital Stru ture of the Insuran e Company Assets Liabilities A 0 E 0 = (1 − α ) A 0 � The life-insuran e ompany has no debt. L 0 = αA 0 � E 0 = initial equit y value � L 0 = initial investment of the p oli yholders who all p ossess the same ontra t.

  5. Simpli�ed Des ription of the Contra t The p oli yholders investment L 0 yields the minimum gua ranteed rate r g at ontra t expiry T . In ase of No-default : A T ≥ L 0 e r g T P oli yholders re eive the gua ranteed amount at T : ➠ In ase of Default : A T < L g (Company Insolven y) P oli yholders re eive A T . Equit yholders re eive nothing . L g T = L 0 e r g T ➠ T

  6. A P a rti ipating P oli y P oli yholders a re given a ontra tual pa rt δ of the b ene- �ts of the ompany when its assets at maturit y a re su� iently high : where Assuming no p rio r bankrupt y , p oli yholders re eive at matu- rit y T : A T > L g T α < 1 . si A T < L g α si L g   A T   T si A T > L g       T ≤ A T ≤ L g L g T Θ L ( T ) = T α         L g T + δ ( αA T − L g  T T ) α

  7. Company Ea rly Default The �rm pursues its a tivities until T if : where λ is �xed. Note that the ase λ > 1 is in favour of the p oli yholders. A t > λL 0 e r g t � B t Let τ b e the default time ∀ t ∈ [0 , T [ , In ase of p rio r insolven y , p oli yholders re eive : si τ = inf { t ∈ [0 , T ] / A t < B t } si  L 0 e r g τ  λ ≥ 1  = min( λ, 1) L 0 e r g τ Θ L ( τ ) =   λL 0 e r g τ λ < 1

  8. Contra t Ma rk et V alue Denoting b y Q the risk-neutral p robabilit y measure, the p ri e of our life insuran e ontra t writes at t < τ : � e − � T This ontra t an b e split up into four simpler sub ontra ts : t r s ds � T − A T ) + � T ) + − ( L g L g T + δ ( αA T − L g V L ( t ) = E t 1 τ ≥ T Q � + e − � τ t r s ds min( λ, 1) L g τ 1 τ<T � : the �nal gua rantee � : the "b onus option" whi h is the pa rti ipating lause � : the default put on whi h p oli yholders a re sho rt. � � PO + � � V L = GF + BO − LR � � : the rebate paid in ase of ea rly default. � GF � BO � PO LR

  9. Assets Dynami s and Interest Rate Mo delling Exp onential V olatilit y fo r the Zero-Coup ons : σ P ( t, T ) = ν The dynami s under Q of the sho rt interest rate r and the Zero- oup on P ( t, T ) a re : � 1 − e − a ( T − t ) � a and = a ( θ − r t ) dt + νdZ Q dr t 1 ( t ) The assets follo w : dA t where Z Q and Z Q a re dP ( t, T ) P ( t, T ) = r t dt − σ P ( t, T ) dZ Q o rrelated Q -Bro wnian motions. ( dZ Q .dZ Q 1 ( t ) ). A t = r t dt + σdZ Q ( t ) 1 1 = ρdt

  10. De o rrelation Let us no w onsider a Bro wnian motion Z Q indep endent from . The Bro wnian motion Z Q an b e exp ressed as 2 Z Q 1 In this w a y w e de o rrelate the interest rate risk from the �rm � assets risk. The assets dynami s then writes : dZ Q ( t ) = ρdZ Q 1 − ρ 2 dZ Q 1 ( t ) + 2 ( t ) � � � dA t ρdZ Q 1 − ρ 2 dZ Q = r t dt + σ 1 ( t ) + 2 ( t ) A t

  11. F o rw a rd-Neutral Exp ressions Let Q T b e the T -fo rw a rd-neutral measure. F rom Girsanov theo rem, Z Q T and Z Q T a re indep endent Q T -Bro wnian mo- tions. 1 2 Under Q T the p ri es P ( t, T ) and A t follo w the sto hasti dif- ferential equations : dZ Q T 1 + σ P ( t, T ) dt , dZ Q T = dZ Q = dZ Q 1 2 2 and dP ( t, T ) P ( t, T )) dt − σ P ( t, T ) dZ Q T P ( t, T ) = ( r t + σ 2 1 � � � dA t ρdZ Q T 1 − ρ 2 dZ Q T = ( r t − σρσ P ( t, T )) dt + σ + 1 2 A t

  12. Contra t V aluation at t = 0 After hanging the p robabilit y measure, w e have in the F o rw a rd-Neutral universe : where V L (0) = P (0 , T ) ( GF + BO − PO + LR )  = L g GF T (1 − E 1 )         = αδ ( E 7 − E 2 ) − δL g  T ( E 8 − E 3 )  BO   = L g   T ( E 9 − E 4 ) − E 10 + E 5 PO         LR = min( λ, 1) L 0 E 6

  13. with the follo wing quantities that remain to b e omputed : E 6 = E Q T [ e r g τ 1 τ<T ] E 1 = Q T [ τ < T ]         A T 1 � �   A T 1  E 2 = E Q T E 7 = E Q T Lg Lg  T T A T > , τ<T A T > α α � � � � A T > L g A T > L g T T E 3 = Q T E 8 = Q T α , τ < T α E 4 = Q T [ A T < L g E 9 = Q T [ A T < L g T , τ < T ] T ] � � � � E 5 = E Q T A T 1 A T <L g E 10 = E Q T A T 1 A T <L g T 1 τ<T T

  14. Metho dology : Longsta� and S hw a rtz App ro ximation Problem : W e need to kno w the la w of τ , �rst passage time of the assets b ey ond the default-triggering ba rrier. Longsta� and S hw a rtz (1995) use F o rtet's result to ap- p ro ximate the densit y of τ in a p roblem simila r to ours. Collin-Dufresne and Goldstein (2001) give a o rre tion to ➠ the p revious metho d to tak e p rop erly into a ount the sto hasti feature of the interest rates. ➠

  15. Rationale Let us rememb er the p rop er exp ression fo r τ Idea : App ro ximate the densit y of τ at time t under Q T as a pie ewise onstant fun tion. τ = inf { t ∈ [0 , T ] / A t < λL 0 e r g t } � The interval [0 , T ] is sub divided into n T subp erio ds. � The interest rate is dis retized b et w een r min and r max into intervals. and r i = r min + iδ r a re the dis retized values of time and interest rate. n r t j = jδ t

  16. The p robabilit y of the event τ ∈ [ t j , t j +1 ] with r ∈ [ r i , r i +1 ] exp resses as : q ( i , j ) . Collin-Dufresne and Goldstein give a re ursive fo rmula fo r these p robabilities : One w ould �rst ompute q ( i, 1 ) fo r ea h i , and then q ( i, j ) re ursively fo r j ≥ 2 using : n r � q ( i, 1 ) = q ( u, 1 ) Ψ( r i , t 1 | r u , t 1 ) u =0 where Φ and Ψ a re ompletely kno wn. j − 1 n r � � q ( i, j ) = Φ( r i , t j ) − q ( u, v ) Ψ( r i , t j | r u , t v ) v =1 u =0

  17. Exp ressions of Φ and Ψ let N b e the umulative fon tion of the G auss (0 , 1) la w, then : � � µ ( r t , l s , r s ) , Σ 2 ( r t , l s , r s ) L ( l t |F s , r t ) = G auss    h − µ ( r t , l 0 , r 0 )   Φ( r t , t ) = f r ( r t , t | l 0 , r 0 , 0) N �  Σ 2 ( r t , l 0 , r 0 ) where :    h − µ ( r t , l s = h, r s )   a r [ r t | r s ] Ψ( r t , t | r s , s ) = f r ( r t , t | l s = h, r s , s ) N �  Σ 2 ( r t , l s = h, r s ) 2 πv e − ( rt − m )2 1 √ f r ( r t , t | l s = h, r s , s ) = , m = E [ r t | r s ] , v = V 2 v

  18. Empiri al Densit y and F o rtet's App ro ximate Densit y −3 3.5 x 10 Empirical Density n r =10 and n T =50 3 n r =50 and n T =200 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 6 7 8 9 10

  19. Computation of the E i dep ending on τ No w, ea h E i an b e omputed easily even if it dep ends on τ . W e detail ho w to valuate E 2 fo r instan e ; its exa t exp ression is :   Then, using onditional la ws w e obtain :    A T 1 �  �  E 2 = E Q T Lg  T A T > , τ<T α As L ( l t |F s , r t ) = G auss and as w e kno w the transition � � densit y of r : f r T + ∞ w e an ompute E 2 dis retizing the integrals. � � E 2 = e r g T e l T 1 { l T > ln ( ds dr s g ( r s , s ) E Q T α ) } | l s = h, r s , s, τ = s L 0 0 −∞ � µ, Σ 2 �

  20. Let X b e a random va riable with la w N ( m, σ 2 ) , w e denote � � � m + σ 2 − ln( a ) � then admits the simpler exp ression : m + σ 2 Φ 1 ( m ; σ ; a ) = E [ e X 1 e X >a ] = exp N 2 σ E 2 � � � T � + ∞ � + ∞ The extended F o rtet's app ro ximation of E 2 writes : Σ s,T ; L 0 µ s,T ; � E 2 = e r g T dr s g ( r s , s ) dr T f r ( r T | r s , s, l s ) Φ 1 � ds α −∞ −∞ 0 � � n T n r n r � � � Σ t j ,T ; L 0 µ t j ,T ; � E 2 = e r g T � δ r f r ( r k | r i , t j , l t j ) Φ 1 q ( i, j ) α j =1 i =0 k =0

  21. Numeri al Analysis W e set our pa rameter range a o rding as : 100 0.4 0.008 0.06 0.03 - 0.02 0.1 10 0.8 0.7 A 0 a ν θ r 0 ρ σ T λ α Contra t Maturit y : 10 y ea rs L 0 = αA 0 = 70

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend