low rank tensor methods for high dimensional eigenvalue
play

Low-rank tensor methods for high-dimensional eigenvalue problems - PowerPoint PPT Presentation

Low-rank tensor methods for high-dimensional eigenvalue problems Daniel Kressner CADMOS Chair of Numerical Algorithms and HPC MATHICSE / SMA / SB EPF Lausanne http://anchp.epfl.ch Based on joint work with Ch. Tobler (MathWorks) M.


  1. Low-rank tensor methods for high-dimensional eigenvalue problems Daniel Kressner CADMOS Chair of Numerical Algorithms and HPC MATHICSE / SMA / SB EPF Lausanne http://anchp.epfl.ch Based on joint work with Ch. Tobler (MathWorks) M. Steinlechner (EPFL), A. Uschmajew (EPFL) 1

  2. Low-rank tensor techniques ◮ Emerged during last five years in numerical analysis. ◮ Successfully applied to: ◮ parameter-dependent / multi-dimensional integrals; ◮ electronic structure calculations: Hartree-Fock / DFT; ◮ stochastic and parametric PDEs; ◮ high-dimensional Boltzmann / chemical master / Fokker-Planck / Schrödinger equations; ◮ micromagnetism; ◮ rational approximation problems; ◮ computational homogenization; ◮ computational finance; ◮ stochastic automata networks; ◮ multivariate regression and machine learning; ◮ . . . ◮ For references on these applications, see ◮ L. Grasedyck, DK, Ch. Tobler (2013). A literature survey of low- rank tensor approximation techniques. GAMM-Mitteilungen, 36(1). ◮ W. Hackbusch (2012). Tensor Spaces and Numerical Tensor Calculus, Springer. 2

  3. High dimensionality Continuous problem on d -dimensional domain with d ≫ 1 ⇓ Straightforward discretization ⇓ Discretized problem of order O ( n d ) Other causes of high dimensionality: ◮ parameter dependencies ◮ parametrized coefficients ◮ parametrized topology ◮ stochastic coefficients ◮ systems describing joint probability distributions ◮ . . . 3

  4. Dealing with high dimensionality Established techniques: l2 ◮ Sparse grid 11 12 13 14 collocation/Galerkin methods. 21 22 23 24 ◮ Adaptive (wavelet) methods. 31 32 33 34 ◮ Monte Carlo method. ◮ Reduced basis method. 41 42 43 44 ◮ · · · l1 Common trait: Smart discretization � system hopefully of order ≪ O ( N D ) ... ... but not in this talk! This talk: Straightforward discretization � system of order O ( N D ) . 4

  5. Dealing with high dimensionality Established techniques: l2 ◮ Sparse grid 11 12 13 14 collocation/Galerkin methods. 21 22 23 24 ◮ Adaptive (wavelet) methods. 31 32 33 34 ◮ Monte Carlo method. ◮ Reduced basis method. 41 42 43 44 ◮ · · · l1 Common trait: Smart discretization � system hopefully of order ≪ O ( N D ) ... ... but not in this talk! This talk: Straightforward discretization � system of order O ( N D ) . 4

  6. Dealing with high dimensionality Established techniques: l2 ◮ Sparse grid 11 12 13 14 collocation/Galerkin methods. 21 22 23 24 ◮ Adaptive (wavelet) methods. 31 32 33 34 ◮ Monte Carlo method. ◮ Reduced basis method. 41 42 43 44 ◮ · · · l1 Common trait: Smart discretization � system hopefully of order ≪ O ( N D ) ... ... but not in this talk! This talk: Straightforward discretization � system of order O ( N D ) . 4

  7. Example: PDE-eigenvalue problem Goal: Compute smallest eigenvalue for in Ω = [ 0 , 1 ] d , ∆ u ( ξ ) + V ( ξ ) u ( ξ ) = λ u ( ξ ) u ( ξ ) = 0 on ∂ Ω . Assumption: Potential represented as s � V ( 1 ) ( ξ 1 ) V ( 2 ) ( ξ 2 ) · · · V ( d ) V ( ξ ) = ( ξ d ) . j j j j = 1 � finite difference discretization A u = ( A L + A V ) u = λ u , with d � A L = I ⊗ · · · ⊗ I ⊗ A L ⊗ I ⊗ · · · ⊗ I , � �� � � �� � j = 1 d − j times j − 1 times s � A ( d ) V , j ⊗ · · · ⊗ A ( 2 ) V , j ⊗ A ( 1 ) A V = V , j . j = 1 5

  8. Example: Henon-Heiles potential Consider Ω = [ − 10 , 2 ] d and potential ([Meyer et al. 1990; Raab et al. 2000; Faou et al. 2009]) d d − 1 j ) + σ 2 V ( ξ ) = 1 � j + 1 − 1 j + 1 ) 2 � � � ∗ σ j ξ 2 σ ∗ ( ξ j ξ 2 3 ξ 3 16 ( ξ 2 j + ξ 2 j + . 2 j = 1 j = 1 with σ j ≡ 1, σ ∗ = 0 . 2. Discretization with n = 128 dof/dimension for d = 20 dimensions. ◮ Eigenvector has n d ≈ 10 42 entries. ◮ Explicit storage of eigenvector would require 10 25 exabyte! 1 1 Global data storage in 2011 calculated at 295 exabyte, see http://www.bbc.co.uk/news/technology-12419672 . 6

  9. Example: Henon-Heiles potential Consider Ω = [ − 10 , 2 ] d and potential ([Meyer et al. 1990; Raab et al. 2000; Faou et al. 2009]) d d − 1 j ) + σ 2 V ( ξ ) = 1 � j + 1 − 1 j + 1 ) 2 � � � ∗ σ j ξ 2 σ ∗ ( ξ j ξ 2 3 ξ 3 16 ( ξ 2 j + ξ 2 j + . 2 j = 1 j = 1 with σ j ≡ 1, σ ∗ = 0 . 2. Discretization with n = 128 dof/dimension for d = 20 dimensions. ◮ Eigenvector has n d ≈ 10 42 entries. ◮ Explicit storage of eigenvector would require 10 25 exabyte! 1 Solved with accuracy 10 − 12 in less than 1 hour on laptop. 1 Global data storage in 2011 calculated at 295 exabyte, see http://www.bbc.co.uk/news/technology-12419672 . 7

  10. Contents 1. Low-rank matrices 2. Low-rank tensor formats 3. Low-rank methods for 2D 4. Low-rank methods for arbitrary dimensions 5. Outlook 8

  11. Low-rank matrices 9

  12. Discretization of bivariate function � � � � ◮ Bivariate function: f ( x , y ) : x min , x max × y min , y max → R . ◮ Function values on tensor grid [ x 1 , . . . , x n ] × [ y 1 , . . . , y m ] . ◮ Normally collected in looong vector:   f ( x 1 , y 1 ) f ( x 2 , y 1 )    .  .   .    f ( x m , y 1 )    f ( x 1 , y 2 )     f ( x 2 , y 2 )     .   . .     f = f ( x m , y 2 )     .  .  .     .  .  .     f ( x 1 , y n )     f ( x 2 , y n )    .  .   . f ( x m , y n ) 10

  13. Discretization of bivariate function � � � � ◮ Bivariate function: f ( x , y ) : x min , x max × y min , y max → R . ◮ Function values on tensor grid [ x 1 , . . . , x n ] × [ y 1 , . . . , y m ] . ◮ Collected in a matrix:   f ( x 1 , y 1 ) f ( x 1 , y 2 ) f ( x 1 , y n ) · · · f ( x 2 , y 1 ) f ( x 2 , y 2 ) f ( x 2 , y n )  · · ·  F =  . . .  . . .   . . . f ( x m , y 1 ) f ( x m , y 2 ) f ( x m , y n ) · · · 11

  14. Low-rank approximation Setting: Matrix X ∈ R n × m , m and n too large to compute/store X explicitly. Idea: Replace X by RS T with R ∈ R n × r , S ∈ R m × r and r ≪ m , n . RS T X Memory nm nr + rm � � X − RS T � 2 : R ∈ R n × r , S ∈ R m × r � min = σ r + 1 . with singular values σ 1 ≥ σ 2 ≥ · · · ≥ σ min { m , n } of X . 12

  15. Singular values of random matrices A = rand(200); semilogy(svd(A)) Singular values A 2 10 50 1 10 0 100 10 −1 150 10 −2 200 10 50 100 150 200 0 50 100 150 200 No reasonable low-rank approximation possible 13

  16. Singular values of ground state ◮ Computed ground state for Henon-Heiles potential for d = 2. ◮ Reshaped ground state into matrix. Singular values Ground state 0 10 −5 10 −10 10 −15 10 −20 10 0 100 200 300 Excellent rank-10 approximation possible 14

  17. When to expect good low-rank approximations Rule of thumb: Smoothness helps. 15

  18. When to expect good low-rank approximations Rule of thumb: Smoothness helps, but is not always needed. 16

  19. Discretization of bivariate function � � � � ◮ Bivariate function: f ( x , y ) : x min , x max × y min , y max → R . ◮ Function values on tensor grid [ x 1 , . . . , x n ] × [ y 1 , . . . , y m ] :   f ( x 1 , y 1 ) f ( x 1 , y 2 ) f ( x 1 , y n ) · · · f ( x 2 , y 1 ) f ( x 2 , y 2 ) f ( x 2 , y n )  · · ·  F =  . . .  . . .   . . . f ( x m , y 1 ) f ( x m , y 2 ) f ( x m , y n ) · · · Basic but crucial observation: f ( x , y ) = g ( x ) h ( y ) �     g ( x 1 ) h ( y 1 ) g ( x 1 ) h ( y n ) g ( x 1 ) · · · . . .     h ( y n ) ] F = . .  = .  [ h ( y 1 ) . . . · · ·   g ( x m ) h ( y 1 ) g ( x m ) h ( y n ) g ( x m ) · · · Separability implies rank 1. 17

  20. Separability and low rank Approximation by sum of separable functions f ( x , y ) = g 1 ( x ) h 1 ( y ) + · · · + g r ( x ) h r ( y ) + error . � �� � =: f r ( x , y ) Define   f r ( x 1 , y 1 ) f r ( x 1 , y n ) · · · . .   F r = . .  . . .  f r ( x m , y 1 ) f r ( x m , y n ) · · · Then F r has rank ≤ r and � F − F r � F ≤ √ mn × error . � √ σ r + 1 ( F ) ≤� F − F r � 2 ≤ � F − F r � F ≤ mn × error . Semi-separable approximation implies low-rank approximation. 18

  21. Semi-separable approximation by polynomials Solution of approximation problem f ( x , y ) = g 1 ( x ) h 1 ( y ) + · · · + g r ( x ) h r ( y ) + error . not trivial; g j , h j can be chosen arbitrarily! General construction by polynomial interpolation: 1. Lagrange interpolation of f ( x , y ) in y -coordinate: r � I y [ f ]( x , y ) = f ( x , θ j ) L j ( y ) j = 1 with Lagrange polynomials L j of degree r − 1 on [ x min , x max ] . 2. Interpolation of I y [ f ] in x -coordinate: r r � � I x [ I y [ f ]]( x , y ) = f ( ξ i , θ j ) L i ( x ) L j ( y ) ˆ = L i , x ( x ) L j , y ( y ) , i , j = 1 i = 1 where f [ f ( ξ i , θ j )] i , j is “diagonalized” by SVD. 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend