a priori error analysis of the petrov galerkin crank
play

A Priori Error Analysis of the Petrov Galerkin Crank Nicolson Scheme - PowerPoint PPT Presentation

A Priori Error Analysis of the Petrov Galerkin Crank Nicolson Scheme for Parabolic Optimal Control Problems Dominik Meidner and Boris Vexler Fakultt fr Mathematik Technische Universitt Mnchen October 10 - 14, 2011 Boris Vexler Crank


  1. A Priori Error Analysis of the Petrov Galerkin Crank Nicolson Scheme for Parabolic Optimal Control Problems Dominik Meidner and Boris Vexler Fakultät für Mathematik Technische Universität München October 10 - 14, 2011 Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 1

  2. Optimal control problem Cost functional � T � T Minimize J ( q , u ) = 1 � u ( t , x )) 2 dx dt + α | q ( t ) | 2 dt ( u ( t , x ) − ˆ 2 2 0 Ω 0 State equation ∂ t u − ∆ u = f + Gq in ( 0 , T ) × Ω, u = 0 on ( 0 , T ) × ∂Ω, u = u 0 in { 0 } × Ω with G : Q = L 2 ( 0 , T ; R D ) → L 2 ( 0 , T ; H 1 ( Ω )) and ( Gq )( t , x ) = � D g i ∈ V = H 1 i = 1 q i ( t ) g i ( x ) , 0 ( Ω ) . Control constraints q a ≤ q ( t ) ≤ q b a. e. in ( 0 , T ) . Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 2

  3. Optimal control problem Cost functional � T � T Minimize J ( q , u ) = 1 � u ( t , x )) 2 dx dt + α | q ( t ) | 2 dt ( u ( t , x ) − ˆ 2 2 0 Ω 0 State equation ∂ t u − ∆ u = f + Gq in ( 0 , T ) × Ω, u = 0 on ( 0 , T ) × ∂Ω, u = u 0 in { 0 } × Ω with G : Q = L 2 ( 0 , T ; R D ) → L 2 ( 0 , T ; H 1 ( Ω )) and ( Gq )( t , x ) = � D g i ∈ V = H 1 i = 1 q i ( t ) g i ( x ) , 0 ( Ω ) . Control constraints q a ≤ q ( t ) ≤ q b a. e. in ( 0 , T ) . Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 2

  4. Optimal control problem Cost functional � T � T Minimize J ( q , u ) = 1 � u ( t , x )) 2 dx dt + α | q ( t ) | 2 dt ( u ( t , x ) − ˆ 2 2 0 Ω 0 State equation ∂ t u − ∆ u = f + Gq in ( 0 , T ) × Ω, u = 0 on ( 0 , T ) × ∂Ω, u = u 0 in { 0 } × Ω with G : Q = L 2 ( 0 , T ; R D ) → L 2 ( 0 , T ; H 1 ( Ω )) and ( Gq )( t , x ) = � D g i ∈ V = H 1 i = 1 q i ( t ) g i ( x ) , 0 ( Ω ) . Control constraints q a ≤ q ( t ) ≤ q b a. e. in ( 0 , T ) . Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 2

  5. A priori error analysis Temporal discretization of the state → discretization parameter k Spatial discretization of the state → discretization parameter h Treatment of the control? → Goal: Error estimate q kh � Q = O ( k 2 + h 2 ) . � ¯ q − ˜ → optimal control ¯ q is not smooth (due to control constraints) → Crank Nicolson scheme is of second order in k → Adjoint scheme? Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 3

  6. A priori error analysis Temporal discretization of the state → discretization parameter k Spatial discretization of the state → discretization parameter h Treatment of the control? → Goal: Error estimate q kh � Q = O ( k 2 + h 2 ) . � ¯ q − ˜ → optimal control ¯ q is not smooth (due to control constraints) → Crank Nicolson scheme is of second order in k → Adjoint scheme? Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 3

  7. A priori error analysis Temporal discretization of the state → discretization parameter k Spatial discretization of the state → discretization parameter h Treatment of the control? → Goal: Error estimate q kh � Q = O ( k 2 + h 2 ) . � ¯ q − ˜ → optimal control ¯ q is not smooth (due to control constraints) → Crank Nicolson scheme is of second order in k → Adjoint scheme? Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 3

  8. A priori error analysis Temporal discretization of the state → discretization parameter k Spatial discretization of the state → discretization parameter h Treatment of the control? → Goal: Error estimate q kh � Q = O ( k 2 + h 2 ) . � ¯ q − ˜ → optimal control ¯ q is not smooth (due to control constraints) → Crank Nicolson scheme is of second order in k → Adjoint scheme? Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 3

  9. A priori error analysis Temporal discretization of the state → discretization parameter k Spatial discretization of the state → discretization parameter h Treatment of the control? → Goal: Error estimate q kh � Q = O ( k 2 + h 2 ) . � ¯ q − ˜ → optimal control ¯ q is not smooth (due to control constraints) → Crank Nicolson scheme is of second order in k → Adjoint scheme? Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 3

  10. Existing literature Error estimates for parabolic problems without constraints: Gunzburger, Hou, Hinze, Deckelnick, Chrysafinos, Winther, . . . Apel and Flaig 2011 (Crank-Nicolson) Error estimates for parabolic problems with control constraints Lasiecka and Malanowski 1977/78, Malanowski 1981 Rösch 2004 Meidner and Vexler 2008 Neitzel and Vexler 2011 (semilinear) Meidner and Vexler 2011 (Petrov-Galerkin-Crank-Nicolson) → O ( k 2 + h 2 ) Error estimates for parabolic problems with state constraints Deckelnick and Hinze 2010 Meidner, Rannacher, and Vexler 2010 Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 4

  11. Existing literature Error estimates for parabolic problems without constraints: Gunzburger, Hou, Hinze, Deckelnick, Chrysafinos, Winther, . . . Apel and Flaig 2011 (Crank-Nicolson) Error estimates for parabolic problems with control constraints Lasiecka and Malanowski 1977/78, Malanowski 1981 Rösch 2004 Meidner and Vexler 2008 Neitzel and Vexler 2011 (semilinear) Meidner and Vexler 2011 (Petrov-Galerkin-Crank-Nicolson) → O ( k 2 + h 2 ) Error estimates for parabolic problems with state constraints Deckelnick and Hinze 2010 Meidner, Rannacher, and Vexler 2010 Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 4

  12. Existing literature Error estimates for parabolic problems without constraints: Gunzburger, Hou, Hinze, Deckelnick, Chrysafinos, Winther, . . . Apel and Flaig 2011 (Crank-Nicolson) Error estimates for parabolic problems with control constraints Lasiecka and Malanowski 1977/78, Malanowski 1981 Rösch 2004 Meidner and Vexler 2008 Neitzel and Vexler 2011 (semilinear) Meidner and Vexler 2011 (Petrov-Galerkin-Crank-Nicolson) → O ( k 2 + h 2 ) Error estimates for parabolic problems with state constraints Deckelnick and Hinze 2010 Meidner, Rannacher, and Vexler 2010 Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 4

  13. Existing literature Error estimates for parabolic problems without constraints: Gunzburger, Hou, Hinze, Deckelnick, Chrysafinos, Winther, . . . Apel and Flaig 2011 (Crank-Nicolson) Error estimates for parabolic problems with control constraints Lasiecka and Malanowski 1977/78, Malanowski 1981 Rösch 2004 Meidner and Vexler 2008 Neitzel and Vexler 2011 (semilinear) Meidner and Vexler 2011 (Petrov-Galerkin-Crank-Nicolson) → O ( k 2 + h 2 ) Error estimates for parabolic problems with state constraints Deckelnick and Hinze 2010 Meidner, Rannacher, and Vexler 2010 Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 4

  14. Optimality system and regularity Optimality system ∂ t ¯ u − ∆ ¯ u = f + G ¯ u ( 0 ) = u 0 q , − ∂ t ¯ z − ∆ ¯ z = ¯ u − ˆ z ( T ) = 0 u , ( α ¯ q + G ∗ ¯ z , δ q − ¯ q ) ≥ 0 ∀ δ q ∈ Q ad − 1 � � → ¯ q = P Q ad α G ∗ ¯ z with the pointwise projection P Q ad : Q → Q ad Assumption 1 Ω is polygonal and convex u ∈ H 1 ( 0 , T ; L 2 ( Ω )) , u ( T ) ∈ H 1 u 0 , ∆ u 0 ∈ H 1 f , ˆ f ( 0 ) , ˆ 0 ( Ω ) 0 ( Ω ) Regularity q ∈ W 1 , ∞ ( 0 , T ; R D ) , z ∈ H 1 ( 0 , T ; H 2 ( Ω )) ∩ H 2 ( 0 , T ; L 2 ( Ω )) ¯ ¯ u , ¯ Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 5

  15. Optimality system and regularity Optimality system ∂ t ¯ u − ∆ ¯ u = f + G ¯ u ( 0 ) = u 0 q , − ∂ t ¯ z − ∆ ¯ z = ¯ u − ˆ z ( T ) = 0 u , ( α ¯ q + G ∗ ¯ z , δ q − ¯ q ) ≥ 0 ∀ δ q ∈ Q ad − 1 � � → ¯ q = P Q ad α G ∗ ¯ z with the pointwise projection P Q ad : Q → Q ad Assumption 1 Ω is polygonal and convex u ∈ H 1 ( 0 , T ; L 2 ( Ω )) , u ( T ) ∈ H 1 u 0 , ∆ u 0 ∈ H 1 f , ˆ f ( 0 ) , ˆ 0 ( Ω ) 0 ( Ω ) Regularity q ∈ W 1 , ∞ ( 0 , T ; R D ) , z ∈ H 1 ( 0 , T ; H 2 ( Ω )) ∩ H 2 ( 0 , T ; L 2 ( Ω )) ¯ ¯ u , ¯ Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 5

  16. Optimality system and regularity Optimality system ∂ t ¯ u − ∆ ¯ u = f + G ¯ u ( 0 ) = u 0 q , − ∂ t ¯ z − ∆ ¯ z = ¯ u − ˆ z ( T ) = 0 u , ( α ¯ q + G ∗ ¯ z , δ q − ¯ q ) ≥ 0 ∀ δ q ∈ Q ad − 1 � � → ¯ q = P Q ad α G ∗ ¯ z with the pointwise projection P Q ad : Q → Q ad Assumption 1 Ω is polygonal and convex u ∈ H 1 ( 0 , T ; L 2 ( Ω )) , u ( T ) ∈ H 1 u 0 , ∆ u 0 ∈ H 1 f , ˆ f ( 0 ) , ˆ 0 ( Ω ) 0 ( Ω ) Regularity q ∈ W 1 , ∞ ( 0 , T ; R D ) , z ∈ H 1 ( 0 , T ; H 2 ( Ω )) ∩ H 2 ( 0 , T ; L 2 ( Ω )) ¯ ¯ u , ¯ Boris Vexler Crank Nicolson for parabolic optimal control problems October 10 - 14, 2011 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend