lov sz theta function and its relationships with perfect
play

Lovsz theta function and its relationships with perfect graph theory - PowerPoint PPT Presentation

. . . . . . . . . . . . . . Lovsz theta function and its relationships with perfect graph theory Arnaud Pcher joint work with C. Bachoc and A. Thiery Univ. Bordeaux (LaBRI / INRIA RealOpt) Shanghai Jiao Tong University


  1. . . . . . . . . . . . . . . Lovász theta function and its relationships with perfect graph theory Arnaud Pêcher joint work with C. Bachoc and A. Thiery Univ. Bordeaux (LaBRI / INRIA RealOpt) Shanghai Jiao Tong University October 24th, 2016 A. Pêcher (Univ. Bordeaux) Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 / 27

  2. . . . . . . . . . . . . Outline . 1 Lovasz’ theta function and perfectness 2 A closed formula. 3 Separating the values. 4 Proving the closed formula. A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 / 27

  3. . . . . . . . . . . . . . . . . Powers of chordless cycles C q A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . . . . . 3 / 27 . . . . . p = q th power of the chordless cycle C p with p vertices C 2 C 3 C 9 9 9

  4. . . . . . . . . . . . . . . . . Complements = circular-cliques p A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . 4 / 27 . . . . Circular-Clique K p / q : vertices { 0 , 1 , · · · , p − 1 } and edges ij , s.t. q ≤ | i − j | ≤ p − q . Hence C q − 1 = K p / q . K 9/1 K 9/2 K 9/3 K 9/4 K 9/3 = C 2 K 9/4 = C 3 K 9/2 = C 9 9 9

  5. . . . . . . . . . . . . . . . Lovász’s theta function is a real function such that, for every graph G : encoding) accuracy Explicitly known for a few families of graphs: perfect graphs (Sandwich Theorem), cycle graphs (Lovász 1978), Kneser graphs (Lovász 1979), square of cycle graphs (Brimkov et al 2000) A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . 5 / 27 . . . . Some properties of Lovász’s theta function ϑ ϑ ( G ) is computable in polynomial time with given (polynomial space ω ( G ) ≤ ϑ ( G ) ≤ χ f ( G ) ≤ χ ( G ) (Sandwich Theorem) if G is homomorphic to H then ϑ ( G ) ≤ ϑ ( H ) Let ϑ p / q = ϑ ( K p / q )

  6. . . . . . . . . . . . . From Perfect to Circular-perfect graphs . Circular chromatic number (Vince, 1988) Circular clique number (Zhu, 2000) Perfect Graph (Berge, 1960) Examples: bipartite graphs, chordal graphs, comparability graphs … (even weighted: Grötschel, Lovász, Schrijver 1981) A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . 6 / 27 . . . . . . . . . . . . { } { } χ c ( G ) = inf k / d | G → K k / d ω c ( G ) = sup k / d | K k / d → G χ ( G ) = ⌈ χ c ( G ) ⌉ ω ( G ) = ⌊ ω c ( G ) ⌋ ω ( G ) ≤ ω c ( G ) ≤ ω f ( G ) = χ f ( G ) ≤ χ c ( G ) ≤ χ ( G ) A graph G is perfect if ∀ H ⊆ G , χ ( H ) = ω ( H ) . If G is perfect then ϑ ( G ) = ω ( G ) . Hence ω ( G ) = χ ( G ) is polytime.

  7. . . . . . . . . . . . . . . From Perfect to Circular-perfect graphs Circular chromatic number (Vince, 1988) Circular clique number (Zhu, 2000) Circular-Perfect Graph (Zhu, 2000) Examples: perfect graphs, circular-cliques, outerplanar graphs … A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . 6 / 27 . . . { } { } χ c ( G ) = inf k / d | G → K k / d ω c ( G ) = sup k / d | K k / d → G χ ( G ) = ⌈ χ c ( G ) ⌉ ω ( G ) = ⌊ ω c ( G ) ⌋ ω ( G ) ≤ ω c ( G ) ≤ ω f ( G ) = χ f ( G ) ≤ χ c ( G ) ≤ χ ( G ) A graph G is circular-perfect if ∀ H ⊆ G , χ c ( H ) = ω c ( H ) . ( ) If G is circular-perfect then ϑ ( G ) = ϑ where χ c ( G ) = p / q . K p / q Aim: use this equality to prove that χ c is polytime.

  8. . . . . . . . . . . . . . . . . polynomial time: polyspace encoding. well-separated. A. Pêcher (Univ. Bordeaux) Motivation Shanghai, 2016 . . . . . . . . . . . . . 7 / 27 . . . . . . . . . . . Core of algorithm to compute χ c of circular-perfect graphs For circular perfect graphs, ϑ ( G ) ̸ = χ c ( G ) in general: √ ϑ ( C 5 ) = 5 < χ c ( C 5 ) = 2 . 5 . Strategy to compute χ c ( G ) for a circular-perfect graph G with n vertices in (1) compute ϑ ( G ) for some precision ϵ > 0 and denote by ϑ this value; (2) for every 1 ≤ p , q ≤ n , if | ϑ − ϑ ( K p / q ) | < ϵ , return p / q . Correct provided there is a unique pair ( p , q ) satisfying (2) and ϵ has Hence, roughly speaking, we need to prove that the values ϑ p / q are

  9. . . . . . . . . . . . . Outline . 1 Lovasz’ theta function and perfectness 2 A closed formula. 3 Separating the values. 4 Proving the closed formula. A. Pêcher (Univ. Bordeaux) A closed formula Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 / 27

  10. . . . . . . . . . . Previous solved cases Theorem - Lovász (1978) - q=2, p odd p cos p p . Proofs: Lovász: algebraic arguments Knuth (1994): linear program with two variables Theorem - Brimkov et al (2000) - q=3, p odd p cos cos p Proof: linear program with 3 variables + geometrical arguments A. Pêcher (Univ. Bordeaux) A closed formula Shanghai, 2016 . 9 / 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( ) π ( ) = ϑ ( C p ) = ϑ ( ) K p /2 π 1 + cos ( ) ( ))   ( 1 2 π 2 π 2 − cos p ⌊ p 3 ⌋ − cos ⌊ p 3 ⌋ + 1 ( ) = p  1 − ϑ  ( ( ) ) ( ( )) ) K p /3 ( 2 π 2 π p ⌊ p 3 ⌋ − 1 ⌊ p 3 ⌋ + 1 − 1

  11. . . . . . . . . . . . . . . A closed formula q q p Theorem (Bachoc, P., Thiery 2010) q A. Pêcher (Univ. Bordeaux) A closed formula Shanghai, 2016 . . . . . . . . . . . . . . 10 / 27 . . . . . . . . . . . . ⌋ 2 π ( 2 k π ) (⌊ kp ) ∀ 0 ≤ k ≤ q − 1 , c k = cos , a k = cos p = 16 , q = 5 (∑ q − 1 ) A 0 ( c i ) with A 0 ( x ) = 2 q − 1 ∏ q − 1 ϑ ( K p / q ) = p i =1 ( x − a i ) i =0 A 0 (1)

  12. . . . . . . . . . . . . Asymptotic behavior . q Corollary p q q q ) Corollary G A. Pêcher (Univ. Bordeaux) A closed formula Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . 11 / 27 . . ( ) 1 + ∑ q − 1 A 0 ( c i ) ϑ ( K p / q ) = p i =1 A 0 (1) If q ≥ 3 and p ≥ 4 q 3 / π then q − 4 e π 2 p ≤ ϑ ( K p / q ) ≤ p 3 (Upper bound is trivial as ϑ ( K p / q ) ≤ χ f ( K p / q ) = p For every ϵ > 0 , for every positive integer α , there is a positive integer ω such that for every circular-perfect graph G satisfying ω ( G ) ≥ ω and α ( G ) ≤ α , we ( ) have | ϑ − χ c ( G ) | ≤ ϵ .

  13. . . . . . . . . . . . . Outline . 1 Lovasz’ theta function and perfectness 2 A closed formula. 3 Separating the values. 4 Proving the closed formula. A. Pêcher (Univ. Bordeaux) Injectivity Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 / 27

  14. . . . . . . . . . . . . . . . . Separating result Theorem (Bachoc, P., Thiery (2013) The proof uses algebraic number theory and is in two steps: A. Pêcher (Univ. Bordeaux) Injectivity Shanghai, 2016 . . . . . . . . . . . . . 13 / 27 . . . . . . . . . . . Let p , p ′ , q , q ′ ≤ n such that p q ̸ = p ′ q ′ . � � Let ∆ = � ϑ ( K p ′ / q ′ ) − ϑ ( K p / q ) � . ∆ ≥ c − n 5 for some c > 0 Hence, computing χ c of circular-perfect graphs is polytime. (1) ∆ ̸ = 0 (2) if ∆ ̸ = 0 then ∆ ≥ c − n 5 for some c > 0

  15. . . . . . . . . . . . . We have . p if and only if if and only if p p such that b is prime; A. Pêcher (Univ. Bordeaux) Injectivity Shanghai, 2016 . . . . . . . . . . . . . . . 14 / 27 . . . . . . . . . . . . ∆ = 0 : taking advantage of monotonicity q ≤ p ′ K p / q → K p ′ / q ′ (Bondy & Hell ’96) q ′ ϑ ( K p / q ) ≤ ϑ ( K p ′ / q ′ ) q < p ′ Assume ∆ = 0 : we have p q ′ and ϑ ( K p / q ) = ϑ ( K p ′ / q ′ ) = ϑ . [ ] q , p ′ b ∈ , ϑ ( K a / b ) = ϑ . Hence for every a q ′ [ ] q , p ′ b ∈ Take a q ′ b is coprime with a and a + 1 .

  16. . . . . . . . . . . . . . . A flavour of algebraic number theory (1/2) Notations and definitions: x ; Some basic observations: k ); the set of algebraic integers is a ring. A. Pêcher (Univ. Bordeaux) Injectivity Shanghai, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 15 / 27 for every k , let ζ k = exp 2 i π / k ; let Φ be the Euler phi function: Φ( n ) ≤ n ; let Q ( ζ k ) denote the cylotomic field: the smallest complex field containing ζ k ; for every x ∈ Q ( ζ k ) , let polmin(x) ∈ Q [ X ] be the minimal polynomial of x is called an algebraic integer if polmin(x) ∈ Z [ X ] . Q ( ζ k ) is a vector space over Q whose dimension is Φ( k ) (hence at most

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend