theta correspondence for dummies
play

Theta Correspondence for Dummies (Correspondance Theta pour les - PowerPoint PPT Presentation

Theta Correspondence for Dummies (Correspondance Theta pour les nuls) Jeffrey Adams Dipendra Prasad Gordan Savin Conference in honor of Roger Howe Yale University June 1-5, 2015 Theta Correspondence Mp = Sp ( 2 n , F ) : metaplectic


  1. Theta Correspondence for Dummies (Correspondance Theta pour les nuls) Jeffrey Adams Dipendra Prasad Gordan Savin Conference in honor of Roger Howe Yale University June 1-5, 2015

  2. Theta Correspondence Mp = � Sp ( 2 n , F ) : metaplectic group ( G , G ′ ) a reductive dual pair: G ′ = Cent Mp ( G ) G = Cent Mp ( G ′ ) , ψ character of F , → oscillator representation ω = ω ψ G , π ′ ∈ � → π ′ if Definition: π ∈ � G ′ , say π ← Hom G × G ′ ( ω, π ⊠ π ′ ) � = 0 Howe Duality Theorem (Howe, Waldspurger, Gan-Takeda) F local → π ′ is a bijection π ← (between subsets of � G and � G ′ ) Definition: π ′ = θ ( π ) , π = θ ( π ′ )

  3. � � � � � Computing θ ( π ) Describe π → θ ( π ) (in terms of some kinds of parameters) Properties of the map: preserving tempered, unitary, relation on wave front sets, functoriality (Langlands/Arthur). . . Typically there are some easy cases, and some hard ones O ( 2 n + 4 ) θ m , 2 n + 4 ( π ) = non-tempered � � � � � � � � � � � � � � � O ( 2 n + 2 ) θ m , 2 n + 2 ( π ) = non-tempered � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � O ( 2 n ) θ m , 2 n ( π ) = discrete series π Sp ( 2 m , F ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � O ( 2 n − 2 ) θ m , 2 n − 2 ( π ) = discrete series � � � � � � � � � � � � � � � � O ( 2 n − 4 ) 0

  4. Θ( π ) θ ( π ) irreducible, ω → π ⊠ θ ( π ) Defintion (Howe) ω ( π ) =the maximal π -isotypic quotient of ω Θ( π ) (“big-theta” of π ): ω ( π ) ≃ π ⊠ Θ( π ) Proof of the duality theorem: θ ( π ) is the unique irreducible quotient of Θ( π ) Generically, Θ( π ) is irreducible and θ ( π ) = Θ( π )

  5. The structure of Θ( π ) Θ( π ) is important, interesting, complicated Θ( 1 ) (Kudla, Rallis, . . . ) Structure of reducible principal series (Howe. . . ) Lee/Zhu: Sp ( 2 n , R ) :

  6. � � � � � � � � � � � � Example: see-saw pairs and reciprocity Howe G ′ H � � � � � � � � � � � � � � � � H ′ G Θ( σ ′ ) Θ( π ) ��������� � � � � � � � � � � π σ ′ Θ( σ ′ )[ π ] ⊠ σ ′ ≃ π ⊠ Θ( π )[ σ ′ ] Roughly: mult G ( π, Θ( σ ′ )) = mult H ′ ( σ ′ , Θ( π ))

  7. � � � � Theta correspondence and induction GL ( n + r ) � Θ m , n + r � � � � � � � � � Θ m , n GL ( m ) GL ( n ) m = n : Θ n , n ( π ) = θ n , n ( π ) = π ∗ Kudla: P = MN , M = GL ( n ) × GL ( r ) Hom GL ( m ) ( ω m , n + r , π ⊠ Ind GL ( n + r ) ( θ m , n ( π ) ⊗ 1 )) � = 0 P Ind GL ( n + r ) ( θ m , n ( π ) ⊗ 1 ) P � Θ m , n + r � � � � � � � � � � � � � θ m , n � � π � θ n ( π )

  8. Yale Freshman graduate student’s dream Θ m , n + r ( π ) ? = Ind GL ( n + r ) ( 1 ⊗ θ m , n ( π )) P θ m , n + r ( π ) is ( ? ) the unique irreducible quotient of Ind GL ( n + r ) ( 1 ⊗ θ m , n ( π )) P Neither is true in general ω = S ( M m , n ) filtration: ω k : functions supported on matrices of rank ≥ k : 0 = ω t ⊂ ω t − 1 ⊂ · · · ⊂ ω 0 = ω Serious issues with extensions here. . . also reducibility of induced representations

  9. Characteristic Basic Principle � ( − 1 ) i Ext i Hom → Ext → EP = i (+ vanishing. . . ) Problem: Study Ext i G × G ′ ( ω, π ⊠ π ′ ) , EP G × G ′ ( ω, π ⊠ π ′ ) alternatively: Ext i G ( ω, π ) , EP G ( ω, π ) as (virtual) representations of G ′ Idea: EP G ( ω, π ) is like Hom G ( ω, π ) with everything made completely reducible. . . all “boundary terms” vanish

  10. Example: GL ( 1 ) , or Tate’s Thesis ( G , G ′ ) = ( GL ( 1 ) , GL ( 1 )) ⊂ SL ( 2 , F ) ω : S ( F ) ( S = C ∞ c , the Schwarz space) ω ( g , h )( f )( x ) = f ( g − 1 xh ) (up to | det | ± 1 2 ) χ character of GL ( 1 ) Question: Hom GL ( 1 ) ( S ( F ) , χ ) =? 0 → S ( F × ) → S ( F ) → C → 0 Hom ( , χ ) = Hom GL ( 1 ) ( , χ ) 0 → Hom ( C , χ ) → Hom ( S ( F ) , χ ) → Hom ( S ( F × ) , χ ) → Ext ( C , χ )

  11. Example: GL ( 1 ) , or Tate’s Thesis 0 → Hom ( C , χ ) → Hom ( S ( F ) , χ ) → Hom ( S ( F × ) , χ ) → Ext ( C , χ ) χ � = 1: 0 → 0 → Hom ( S ( F ) , χ ) → Hom ( S ( F × ) , χ ) → 0 Hom GL ( 1 ) ( S ( F ) , χ ) = Hom GL ( 1 ) ( S ( F ∗ ) , χ ) = C χ = 1: 0 → C → Hom ( S ( F ) , χ ) → Hom ( S ( F × ) , χ ) → C → Ext 1 ( S ( F ) , C ) = 0 Hom GL ( 1 ) ( S ( F ) , χ ) = 1 in all cases Remark: Tate’s thesis: this is true provided | χ ( x ) | = | x | s with s > 1. General case: analytic continuation in χ of Tate L-functions.

  12. Theta and the Euler Poincare Characteristic Punch line: Theorem (Adams/Prasad/Savin) Fix m , and consider the dual pairs ( G = GL ( m ) , GL ( n )) n ≥ 0. π ∈ � G � 0 n < m EP G ( ω m , n , π ) ∞ ≃ Ind GL ( n ) ( 1 ⊗ π ) n ≥ m P where M = GL ( n − m ) × GL ( m ) More details. . .

  13. Euler-Poincare Characteristic Reference: D. Prasad, Ext Analogues of Branching Laws F : p -adic field, G : reductive group/ F C = C G : category of smooth representations S ( G ) = C ∞ c ( G ) , smooth compactly supported functions, smooth representation of G × G Lemma: C has enough projectives and injectives Ext i G ( X , Y ) : derived functors of Hom G ( _ , Y ) or Hom G ( X , _ ) .

  14. Euler-Poincare Characteristic P = MN ⊂ G , Ind G P normalized induction r G P normalized Jacquet functor X , Y smooth 1. Ext i G ( X , Y ) = 0 for i > split rank of G 2. S ( G ) is projective (as a left G -module) 3. Hom G ( S ( G ) , X ) G −∞ ≃ X 4. EP GL ( m ) ( X , Y ) = 0 ( X , Y finite length) G ( X , Ind G 5. Ext i P ( Y )) ≃ Ext i M ( r G P ( X ) , Y ) 6. Ext i G ( Ind G P ( X ) , Y ) ≃ Ext i M ( X , r P G ( Y )) 7. Kunneth Formula ( X 1 admissible): � Ext j Ext i G 1 ( X 1 , Y 1 ) ⊗ Ext k G 1 × G 2 ( X 1 ⊠ X 2 , Y 1 ⊠ Y 2 ) ≃ G 2 ( X 2 , Y 2 ) j + k = i

  15. Euler-Poincare Characteristic X : G × G ′ -modules (for example: ω ) Y : G -module Ext i G ( X , Y ) is an G ′ -module (not necessarily smooth) Definition: G ( X , Y ) ∞ = Ext i G ( X , Y ) G ′ −∞ Ext i (a smooth G ′ -module) Dangerous bend: Ext i G ( X , Y ) is (probably) not the derived functors of Y → Hom G ( X , Y ) G ′ −∞ Definition: Assume Ext i G ( X , Y ) has finite length for all i EP G ( X , Y ) = � i ( − 1 ) i Ext G ( X , Y ) ∞ is a well-defined element of the Grothendieck group of smooth representations of G ′

  16. Back to Θ( π ) ( G , G ′ ) dual pair, ω , π irreducible representation of G EP G ( ω, π ) ∞ ω → π ⊠ Θ( π ) Proposition: Hom G ( ω, π ) ∞ = Θ( π ) ∨ ∨ : smooth dual proof: 0 → ω [ π ] → ω → π ⊠ Θ( π ) → 0 Hom ( , π ) is left exact: φ 0 → Hom G ( π ⊠ Θ( π ) , π ) → Hom G ( ω, π ) → Hom G ( ω [ π ] , π ) φ = 0 ⇒ Hom ( ω, π ) ≃ Θ( π ) ∗ , take the smooth vectors

  17. Computing EP Recall: ω k = S ( matrices of rank ≥ k ) 0 = ω t ⊂ ω t − 1 ⊂ · · · ⊂ ω 0 = ω ω k /ω k + 1 = S (Ω k ) (Ω k = matrices of rank k ) S (Ω k ) ≃ Ind GL ( m ) × GL ( n ) GL ( k ) × GL ( m − k ) × GL ( k ) × GL ( n − k ) ( S ( GL ( k )) ⊠ 1 ) . Compute Ext i GL ( m ) ( S (Ω k ) , π ) By Frobenius reciprocity, Kunneth formula, other basic properties. . .

  18. ℓ � GL ( m ) ( S (Ω k ) , π ) ∞ ≃ Ind GL ( n ) Ext i GL ( k ) × GL ( n − k ) ( σ j ⊠ 1 ) ⊗ Ext i GL ( m − k ) ( 1 , τ j ) j = 1 r P ( π ) = � σ j ⊠ τ j implies Lemma Ext i GL ( m ) ( S (Ω k ) , π ) is a finite length GL ( n ) -module EP GL ( m ) ( S (Ω k ) , π ) is well defined EP GL ( m ) ( S (Ω k ) , π ) = 0 unless k = m .

  19. Main Theorem: Type II Theorem Fix m , and consider the dual pairs ( G = GL ( m ) , GL ( n )) n ≥ 0. π ∈ � G � 0 n < m EP G ( ω m , n , π ) ∞ ≃ Ind GL ( n ) ( 1 ⊗ π ) n ≥ m P where M = GL ( n − m ) × GL ( m )

  20. Main Theorem: Type I Similar idea, using Kudla (and MVW) calculation of the Jacquet module of the oscillator representation For simplicity: state it for ( Sp ( 2 m ) , O ( 2 n )) (split orthogonal groups) ω = ω m , n oscillator representation for ( G , G ′ ) = ( Sp ( 2 m ) , O ( 2 n )) t < m → M ( t ) = GL ( t ) × Sp ( 2 m − 2 t ) ⊂ Sp ( 2 m ) P ( t ) = M ( t ) N ( t ) , Ind G P ( t ) () t < n → M ′ ( t ) = GL ( t ) × O ( 2 n − 2 t ) ⊂ O ( 2 m ) P ′ ( t ) = M ′ ( t ) N ′ ( t ) , Ind G ′ P ′ ( t ) () ω M ( t ) , M ′ ( t ) oscillator representation for dual pair ( M ( t ) , M ′ ( t ))

  21. Main Theorem: Type I Theorem Fix an irreducible representation π of M ( t ) . Then � 0 t > n P ( t ) ( π )) ∞ ≃ EP G ( ω G , G ′ , Ind G Ind G ′ P ′ ( t ) ( EP M ( t ) ( ω M ( t ) , M ′ ( t ) , π ) ∞ ) t ≤ n . EP( ω ,_) ∞ commutes with induction

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend