lossy coding of a time limited piece of a band limited
play

Lossy coding of a time-limited piece of a band-limited white - PowerPoint PPT Presentation

Lossy coding of a time-limited piece of a band-limited white Gaussian source Youssef Jaffal, Ibrahim Abou-Faycal American University of Beirut Department of Electrical and Computer Engineering Email: yaj03@mail.aub.edu 2020 IEEE International


  1. Lossy coding of a time-limited piece of a band-limited white Gaussian source Youssef Jaffal, Ibrahim Abou-Faycal American University of Beirut Department of Electrical and Computer Engineering Email: yaj03@mail.aub.edu 2020 IEEE International Symposium on Information Theory 21-26 June 2020 – Los Angeles, California, USA Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 1 / 23

  2. Motivation 1 Motivation Prolate Spheroidal Wave Functions (PSWFs) 2 3 System Model 4 Bounds Lower Bound Upper Bound 5 Asymptotic analysis as T → ∞ Numerical Results 6 7 Summary Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 2 / 23

  3. Motivation Rate Distortion Function of Band-limited Sources For a real W -Hz band-limited “white” Gaussian source: � Q � R Shannon = W log 2 bits per seconds D Q : the average power of the source D : the average mean-squared error distortion level How to derive this equation? 1- Transform the problem to a discrete one using the Shannon-Nyquist sampling theorem 2- Apply the rate distortion function for the discrete-time stationary Gaussian source However: This requires compression at once of an asymptotically infinite duration piece from the source Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 3 / 23

  4. Motivation Practical Setup Independently encode adjacent T -seconds short-duration pieces − 3 T − T T 3 T X ( t ) 2 2 2 2 . . . . . . . . . . . . . . . ✻ . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✲ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . X − 1 ( t ) X 0 ( t ) X 1 ( t ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Then: Sampling the short duration sub-functions is lossy : 1 → Solution: make use of Prolate Spheroidal Wave Functions (PSWFs) Deriving non-asymptotic results for the equivalent discrete-time 2 problem: → Solution: Derive bounds in the finite-blocklength regime Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 4 / 23

  5. Prolate Spheroidal Wave Functions (PSWFs) 1 Motivation Prolate Spheroidal Wave Functions (PSWFs) 2 3 System Model 4 Bounds Lower Bound Upper Bound 5 Asymptotic analysis as T → ∞ Numerical Results 6 7 Summary Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 5 / 23

  6. Prolate Spheroidal Wave Functions (PSWFs) Properties of PSWFs Define c = 2 WT > 0 . The PSWFs { ϕ c,i ( t ) } i ∈ N satisfy: � ∞ 1- ϕ c,i ( t ) ϕ c,l ( t ) dt = δ il , ∀ i, l ∈ N −∞ � T/ 2 2- ϕ c,i ( t ) ϕ c,l ( t ) dt = λ c,i δ il , ∀ i, l ∈ N − T/ 2 � � Dϕ c,i ( t ) 3- The normalized time-limited PSWFs √ form a CON set λ c,i i ∈ N The Eigenvalues { λ c,i } satisfy: 10 0 ∞ � λ c,i = 2 WT = c 100,i 1- 100,i i =0 10 -5 For any γ > 0 , c →∞ λ c,c (1+ γ ) = 0 lim 10 -10 c →∞ λ c,c (1 − γ ) = 1 . lim 84 88 92 96 100 104 108 112 116 i Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 6 / 23

  7. System Model 1 Motivation Prolate Spheroidal Wave Functions (PSWFs) 2 3 System Model 4 Bounds Lower Bound Upper Bound 5 Asymptotic analysis as T → ∞ Numerical Results 6 7 Summary Youssef Jaffal, Ibrahim Abou-Faycal (American University of Beirut Department of Electrical and Computer Engine ISIT 2020 7 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend