long range order in random 3 colorings in high dimensions
play

Long-range order in random 3 -colorings in high dimensions Ohad N. - PowerPoint PPT Presentation

Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Long-range order in random 3 -colorings in high dimensions Ohad N. Feldheim Joint work with Yinon Spinka IMA, University of Minnesota June 15, 2015


  1. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations The Ising model The Ising model ( 2 -states Potts). • Values represent spin + / − direction. • P ( f ) proportional to e − β N ( f ) . 0 0 0 0 1 0 1 0 1 0 (Stationary distribution of Glauber 0 1 0 1 0 1 1 1 0 dynamics) 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0

  2. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations The Ising model The Ising model ( 2 -states Potts). • Values represent spin + / − direction. • P ( f ) proportional to e − β N ( f ) . 0 0 0 0 1 0 1 0 1 0 (Stationary distribution of Glauber 0 1 0 1 0 1 1 1 0 dynamics) 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 • Often taken under external field 0 1 0 1 0 1 0 1 0 (giving a bias for seeing + vs. − ). 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0

  3. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations The Ising model The Ising model ( 2 -states Potts). • Values represent spin + / − direction. • P ( f ) proportional to e − β N ( f ) . 0 0 0 0 1 0 1 0 1 0 (Stationary distribution of Glauber 0 1 0 1 0 1 1 1 0 dynamics) 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 • Often taken under external field 0 1 0 1 0 1 0 1 0 (giving a bias for seeing + vs. − ). 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 • Ferromagnet ( β < 0 ) and 0 1 0 1 0 1 0 anti-ferromagnet ( β > 0 ) are 0 0 0 equivalent.

  4. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ).

  5. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder

  6. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions.

  7. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions. 0 0 0 • Λ large domain. 0 0 0 0 • Condition on f ( v ) = τ for all v on 0 0 the boundary. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Even zero boundary conditions

  8. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions. 0 0 0 • Λ large domain. 0 1 0 1 0 1 0 • Condition on f ( v ) = τ for all v on 0 1 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 Sample with 0-boundary conditions on even domain

  9. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions. 0 0 0 • Λ large domain. 0 1 0 1 0 1 0 • Condition on f ( v ) = τ for all v on 0 1 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 • Does the distribution in the center 0 1 0 1 0 1 0 1 0 depend on τ ? 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 sample with 0-boundary conditions on even domain

  10. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions. 0 0 0 • Λ large domain. 0 1 0 1 0 1 0 • Condition on f ( v ) = τ for all v on 0 1 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 • Does the distribution in the center 0 1 0 1 0 1 0 1 0 depend on τ ? 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 • Ordered phase: Yes. 0 1 0 1 0 1 0 1 0 Disordered phase: No. 0 1 0 1 0 1 0 0 0 0 sample with 0-boundary conditions on even domain

  11. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Thermodynamical limit Thermodynamical questions deal with large volume systems. That is fixed d , with n → ∞ ( thermodynamical limit ). Order vs. Disorder: dependence on boundary conditions. 0 0 0 • Λ large domain. 0 1 0 1 0 1 0 • Condition on f ( v ) = τ for all v on 0 1 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 • Does the distribution in the center 0 1 0 1 0 1 0 1 0 depend on τ ? 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 • Ordered phase: Yes. 0 1 0 1 0 1 0 1 0 Disordered phase: No. 0 1 0 1 0 1 0 • Mature notions: 0 0 0 Gibbs measures & pure phases. sample with 0-boundary conditions on even domain

  12. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions:

  13. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions: • In which d does a phase transition occur? 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

  14. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions: • In which d does a phase transition occur? • What does a typical β ≫ 0 sample look like? 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1

  15. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions: • In which d does a phase transition occur? • What does a typical β ≫ 0 sample look like? Advanced questions: • Behavior at/near criticality? 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

  16. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions: • In which d does a phase transition occur? • What does a typical β ≫ 0 sample look like? Advanced questions: • Behavior at/near criticality? • Rapid/Torpid mixing? 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1

  17. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Questions about the model Basic Questions: • In which d does a phase transition occur? • What does a typical β ≫ 0 sample look like? Advanced questions: • Behavior at/near criticality? • Rapid/Torpid mixing? • How fast do correlations decay? 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

  18. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Using zero-boundary conditions How to demonstrate multiple pure phases? More specific strategy for β ≫ 0 . • Λ large even domain.

  19. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Using zero-boundary conditions How to demonstrate multiple pure phases? More specific strategy for β ≫ 0 . • Λ large even domain. 0 0 0 • Condition on f ( v ) = 0 for all v on 0 0 0 0 the boundary. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Even zero boundary conditions

  20. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Using zero-boundary conditions How to demonstrate multiple pure phases? More specific strategy for β ≫ 0 . • Λ large even domain. 0 0 0 • Condition on f ( v ) = 0 for all v on 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 Sample with 0-boundary conditions on even domain

  21. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Using zero-boundary conditions How to demonstrate multiple pure phases? More specific strategy for β ≫ 0 . • Λ large even domain. 0 0 0 • Condition on f ( v ) = 0 for all v on 0 1 0 1 0 1 0 the boundary. 0 1 0 1 0 1 0 1 0 • Show that the frequencies on even 0 1 0 1 0 1 0 1 0 and odd sublattice are unbalanced. 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 sample with 0-boundary conditions on even domain

  22. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Properties of the Ising model Answers to these questions are now known for the Ising model ( q = 2 ): • In all d ≥ 2 there is a critical temperature 1 /β c = Θ( d ) (error terms are known). • β < β c implies a unique pure state. • β > β c implies two pure states. • In β > β c one sublattice is biased towards + and the other towards − . Ising 2 d ferromagnets and anti-ferromagnets: β = ≪ 0 F − Crit < 0 > 0 AF − Crit ≫ 0 −∞ ∞

  23. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond Ising Clock and Potts models. Cyril Domb Renfrey Po�s

  24. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Kotecky Conjecture Baxter (1982): d = 2 , q = 3 Potts AF - critical at β = ∞ . Rodney Baxter

  25. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Kotecky Conjecture Baxter (1982): d = 2 , q = 3 Potts AF - critical at β = ∞ . Roman Kotecky (1985): Conjecture - for AF 3 -states Potts model on Z d , there exists a minimal d 0 (probably d 0 = 3 ) such that for d ≥ d 0 there is a positive critical temperature 1 /β c . Roman Kotecký 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  26. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Kotecky Conjecture Baxter (1982): d = 2 , q = 3 Potts AF - critical at β = ∞ . Roman Kotecky (1985): Conjecture - for AF 3 -states Potts model on Z d , there exists a minimal d 0 (probably d 0 = 3 ) such that for d ≥ d 0 there is a positive critical temperature 1 /β c . Roman Kotecký 0 0 0 • For β > β c : six pure states (phase 0 2 0 2 0 1 0 co-existence). 0 1 0 1 0 2 0 1 0 0 1 0 1 0 2 0 1 0 • Each state corresponds to one color 0 2 0 2 0 1 0 2 0 dominant on one sublattice and nearly 0 1 0 2 0 2 0 1 0 0 1 0 1 0 1 0 1 0 absent from the other. 0 2 0 2 0 2 0 2 0 0 2 0 1 0 1 0 0 0 0

  27. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Kotecky Conjecture Baxter (1982): d = 2 , q = 3 Potts AF - critical at β = ∞ . Roman Kotecky (1985): Conjecture - for AF 3 -states Potts model on Z d , there exists a minimal d 0 (probably d 0 = 3 ) such that for d ≥ d 0 there is a positive critical temperature 1 /β c . Roman Kotecký 0 0 0 • For β > β c : six pure states (phase 0 2 0 2 0 1 0 co-existence). 0 1 0 1 0 2 0 1 0 0 1 0 1 0 2 0 1 0 • Each state corresponds to one color 0 2 0 2 0 1 0 2 0 dominant on one sublattice and nearly 0 1 0 2 0 2 0 1 0 0 1 0 1 0 1 0 1 0 absent from the other. 0 2 0 2 0 2 0 2 0 0 2 0 1 0 1 0 • For β < β c : one disordered pure phase, 0 0 0 correlations decay exponentially fast.

  28. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations AF 3 -states Potts q ≥ 3 AF is more challenging because the model “defies” the third law of thermodynamics .

  29. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations AF 3 -states Potts q ≥ 3 AF is more challenging because the model “defies” the third law of thermodynamics . 3rd law: the entropy of a perfect crystal at absolute zero is zero . 0 1 2 0 2 1 0 2 0 1 1 0 1 2 1 0 1 0 1 2 2 1 0 1 0 2 0 2 0 1 1 0 1 0 2 0 1 0 1 0 0 2 0 2 1 2 0 1 0 2 2 0 1 0 2 0 1 0 2 1 1 2 0 2 0 1 2 1 0 2 2 0 2 1 2 0 1 0 1 0 0 1 0 2 0 1 2 1 2 1 1 2 1 0 1 2 0 2 0 2

  30. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations AF 3 -states Potts q ≥ 3 AF is more challenging because the model “defies” the third law of thermodynamics . 3rd law: the entropy of a perfect crystal at absolute zero is zero . The remaining entropy is called residual entropy . 0 1 2 0 2 1 0 2 0 1 1 0 1 2 1 0 1 0 1 2 2 1 0 1 0 2 0 2 0 1 1 0 1 0 2 0 1 0 1 0 0 2 0 2 1 2 0 1 0 2 2 0 1 0 2 0 1 0 2 1 1 2 0 2 0 1 2 1 0 2 2 0 2 1 2 0 1 0 1 0 0 1 0 2 0 1 2 1 2 1 1 2 1 0 1 2 0 2 0 2

  31. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature - highly connected Benjamini, Haggstrom and Mossel (1999): What about the case n fixed, β = ∞ , d → ∞ ?

  32. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature - highly connected Benjamini, Haggstrom and Mossel (1999): What about the case n fixed, β = ∞ , d → ∞ ? Kahn (2001) and Galvin (2003): q = 3 , n = 2 , β = ∞ , d → ∞ has six pure states.

  33. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature - highly connected Benjamini, Haggstrom and Mossel (1999): What about the case n fixed, β = ∞ , d → ∞ ? Kahn (2001) and Galvin (2003): q = 3 , n = 2 , β = ∞ , d → ∞ has six pure states. Galvin & Engbers (2012): Any q , n fixed, β = ∞ , d → ∞ has many pure states.

  34. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature - highly connected Benjamini, Haggstrom and Mossel (1999): What about the case n fixed, β = ∞ , d → ∞ ? Kahn (2001) and Galvin (2003): q = 3 , n = 2 , β = ∞ , d → ∞ has six pure states. Galvin & Engbers (2012): Any q , n fixed, β = ∞ , d → ∞ has many pure states. This is very encouraging, but fixed n is irrelevant for thermodynamical limits.

  35. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature through other model Galvin and Kahn(2004): d ≫ 0 hard-core (independent set) model has a phase transition. David Galvin Jeff Kahn

  36. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero Temperature through other model Galvin and Kahn(2004): d ≫ 0 hard-core (independent set) model has a phase transition. Peled(2010): d ≫ 0 hom( Z d , Z ) with zero boundary conditions fluctuate mainly between ± 1 . Ron Peled 0 0 0 0 -1 0 -1 0 1 0 0 1 0 1 0 -1 0 1 0 0 1 2 1 2 1 0 1 0 0 1 2 3 2 1 0 -1 0 0 1 2 1 2 1 0 1 0 0 1 2 1 0 1 -1 1 0 0 1 0 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 0 0

  37. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Homomorphism height functions and 3 -colorings There is a natural bijection between 3 -colorings and hom( Z d , Z ) . 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 6 0 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 7 2 1 1 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 0 1 2 0 1 -1 0 1 2 1 0 1 2 3 4 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 2 0 2 0 1 -1 0 1 2 1 2 3 2 3 4 0 1 2 0 2 1 2 0 1 2 mod 3 0 1 2 3 2 1 2 3 4 5 1 0 1 2 0 2 0 1 2 0 1 0 1 2 3 2 3 4 5 6 0 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 Pointed 3-Colorings Pointed HHFs

  38. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Homomorphism height functions and 3 -colorings There is a natural bijection between 3 -colorings and hom( Z d , Z ) . 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 6 0 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 7 2 1 1 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 0 1 2 0 1 -1 0 1 2 1 0 1 2 3 4 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 2 0 2 0 1 -1 0 1 2 1 2 3 2 3 4 0 1 2 0 2 1 2 0 1 2 mod 3 0 1 2 3 2 1 2 3 4 5 1 0 1 2 0 2 0 1 2 0 1 0 1 2 3 2 3 4 5 6 0 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 Pointed 3-Colorings Pointed HHFs HHF values between ± 1 ⇒ Coloring values of even 0 , odd 1 , 2 .

  39. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 0 0 0 1 0 2 0 1 0 0 1 0 1 0 1 2 1 0 0 1 2 1 2 1 2 1 0 0 1 2 0 2 1 0 2 0 0 1 2 1 2 1 0 1 0 0 1 2 1 0 1 2 1 0 0 1 0 1 0 2 0 1 0 0 2 0 1 0 2 0 0 0 0

  40. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 .

  41. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 . Formally: E |{ v ∈ V even : f ( v ) � = 0 }| � � cd < exp − . log 2 d | V even |

  42. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 . Formally: E |{ v ∈ V even : f ( v ) � = 0 }| � � cd < exp − . log 2 d | V even | • This verifies the existence of at least six pure states.

  43. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 . Formally: E |{ v ∈ V even : f ( v ) � = 0 }| � � cd < exp − . log 2 d | V even | • This verifies the existence of at least six pure states. • A preliminary result on Glauber dynamics’ mixing was developed by Galvin & Randall in 2007.

  44. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 . Formally: E |{ v ∈ V even : f ( v ) � = 0 }| � � cd < exp − . log 2 d | V even | • This verifies the existence of at least six pure states. • A preliminary result on Glauber dynamics’ mixing was developed by Galvin & Randall in 2007. • The bound here deviates by log 2 d factor from predicted estimates.

  45. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Zero-temperature case of the Kotecky conjecture. ...and hence for β = ∞ the conjecture has been verified: 0 -boundary rigidity at zero-temperature (Peled 2010) (Galvin, Kahn, Randall & Sorkin 2012) In a typical uniformly chosen proper 3-coloring with 0-boundary conditions in high dimensions nearly all the even vertices take the color 0 . Formally: E |{ v ∈ V even : f ( v ) � = 0 }| � � cd < exp − . log 2 d | V even | • This verifies the existence of at least six pure states. • A preliminary result on Glauber dynamics’ mixing was developed by Galvin & Randall in 2007. • The bound here deviates by log 2 d factor from predicted estimates. • Zero-temperature has no physical meaning.

  46. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method for β = ∞ The main proposition in Peled’s method is that external level line of length L around a vertex are exp( − cL / d log 2 d ) unlikely. Level lines from Peled’s paper

  47. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method for β = ∞ The main proposition in Peled’s method is that external level line of length L around a vertex are exp( − cL / d log 2 d ) unlikely. Level lines from Peled’s paper The main ingredient is the shift-minus transformation: 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 ? 0 ? 0 -1 0 1 0 0 1 0 1 0 -1 0 1 0 0 ? 0 ? 0 -1 0 1 0 0 1 0 1 0 ? 0 1 0 0 1 2 1 2 1 0 1 0 0 2 1 2 1 ? 0 1 0 0 1 2 3 2 1 0 -1 0 0 2 3 2 1 ? 0 -1 0 0 1 2 1 0 ? 0 -1 0 0 1 2 1 2 1 0 1 0 0 2 1 2 1 ? 0 1 0 0 1 0 1 0 ? 0 1 0 0 1 2 1 0 1 2 1 0 0 2 1 ? 0 1 2 1 0 0 1 0 ? 0 1 2 1 0 0 1 0 1 0 -1 0 1 0 0 1 0 ? 0 -1 0 1 0 0 1 0 ? 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 -1 0 1 0 -1 0 0 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 Shift + Minus Sublevel set Shift

  48. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method for β = ∞ The main proposition in Peled’s method is that external level line of length L around a vertex are exp( − cL / d log 2 d ) unlikely. Level lines from Peled’s paper The main ingredient is the shift-minus transformation, L whose entropy gain is 2 d . 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 -1 0 -1 0 1 0 0 ? 0 ? 0 -1 0 1 0 0 1 0 1 0 -1 0 1 0 0 ? 0 ? 0 -1 0 1 0 0 1 0 1 0 ? 0 1 0 0 1 2 1 2 1 0 1 0 0 2 1 2 1 ? 0 1 0 0 1 2 3 2 1 0 -1 0 0 2 3 2 1 ? 0 -1 0 0 1 2 1 0 ? 0 -1 0 0 1 2 1 2 1 0 1 0 0 2 1 2 1 ? 0 1 0 0 1 0 1 0 ? 0 1 0 0 1 2 1 0 1 2 1 0 0 2 1 ? 0 1 2 1 0 0 1 0 ? 0 1 2 1 0 0 1 0 1 0 -1 0 1 0 0 1 0 ? 0 -1 0 1 0 0 1 0 ? 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 -1 0 1 0 -1 0 0 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 Shift + Minus Sublevel set Shift

  49. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method and the special case of 3 -states Write F L for colorings with contour of length L around v . We thus map: each f ∈ F L , to 2 L / 2 d other colorings. However this map is not one-to-many.

  50. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method and the special case of 3 -states Write F L for colorings with contour of length L around v . We thus map: each f ∈ F L , to 2 L / 2 d other colorings. However this map is not one-to-many. Roughly - the idea is to control the number of f with contour of length L , using the formula: | domain | < | image | · in-degree out-degree

  51. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Peled’s method and the special case of 3 -states Write F L for colorings with contour of length L around v . We thus map: each f ∈ F L , to 2 L / 2 d other colorings. However this map is not one-to-many. Roughly - the idea is to control the number of f with contour of length L , using the formula: | domain | < | image | · in-degree out-degree Non-trivial. Hard to estimate in-degree, and requires either • (Peled) altering the map to avoid high in-degree. • (Galvin & al. ) probabilistic biasing (flow method).

  52. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond proper colorings of Z d It is non-trivial to extend this result even to colorings of the torus: 0 1 0 1 0 2 0 1 0 1 0 1 0 1 2 1 0 1 0 1 0 1 2 1 0 1 0 1 2 1 0 1 2 0 2 1 0 1 2 0 2 1 2 0 2 1 2 1 2 1 2 1 0 1 2 1 2 1 0 1 0 1 0 1 2 1 0 1 0 1 2 1 0 1 0 1 0 2 0 1 2 1 0 1 2 1 0 2 0 1 2 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 2 1 2 1 0 1 0 1 0 2 0 1 0 1 0 Periodic boundary conditions

  53. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond proper colorings of Z d The bijection does not extend to the torus. 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 6 0 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 7 2 1 1 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 0 1 2 0 1 -1 0 1 2 1 0 1 2 3 4 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 2 0 2 0 1 -1 0 1 2 1 2 3 2 3 4 0 1 2 0 2 1 2 0 1 2 mod 3 0 1 2 3 2 1 2 3 4 5 1 0 1 2 0 2 0 1 2 0 1 0 1 2 3 2 3 4 5 6 0 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 Pointed 3-Colorings Pointed HHFs

  54. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond proper colorings of Z d The bijection does not extend to the torus. 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 6 0 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 7 2 1 1 2 1 0 1 2 0 1 2 0 1 2 1 0 1 2 3 4 5 6 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 0 1 2 0 1 -1 0 1 2 1 0 1 2 3 4 0 1 0 1 2 1 2 0 1 2 0 1 0 1 2 1 2 3 4 5 2 0 1 2 1 2 0 2 0 1 -1 0 1 2 1 2 3 2 3 4 0 1 2 0 2 1 2 0 1 2 mod 3 0 1 2 3 2 1 2 3 4 5 1 0 1 2 0 2 0 1 2 0 1 0 1 2 3 2 3 4 5 6 0 1 0 1 2 0 1 2 0 1 0 1 0 1 2 3 4 5 6 7 Pointed 3-Colorings Pointed HHFs However, algebraic topology says that it nearly does.

  55. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond zero-temperature Periodic boundary rigidity at zero-temperature (F. & Peled 2013) In high dimension, a typical uniformly chosen proper 3-coloring with periodic boundary conditions is nearly constant on either the even or odd sublattice.

  56. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Beyond zero-temperature Periodic boundary rigidity at zero-temperature (F. & Peled 2013) In high dimension, a typical uniformly chosen proper 3-coloring with periodic boundary conditions is nearly constant on either the even or odd sublattice. • This is a first step beyond the HHF structure.

  57. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Positive temperature

  58. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Positive temperature Finding contours in positive temperature is quite problematic... 1 2 1 0 2 0 2 0 1 2 0 2 0 1 0 2 0 1 0 2 1 0 1 0 1 0 1 2 1 0 0 1 2 2 2 1 2 1 0 2 1 0 0 1 0 2 1 0 2 0 0 1 2 1 2 1 0 1 0 1 1 0 1 2 1 0 1 2 1 0 0 1 0 1 0 2 0 1 0 2 2 0 2 0 1 0 2 0 2 1 1 1 0 2 0 1 0 1 1 2 β ≫ 0 sample

  59. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Remark - Asymmetric case. The 3 -state AF Potts model has recently been studied on asymmetric planar lattices. Kotecky, Sokal and Swart (2013): In such lattices there is a phase transition at positive temperature, with 3 pure states. Lattices from KSS paper

  60. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Remark - Asymmetric case. The 3 -state AF Potts model has recently been studied on asymmetric planar lattices. Kotecky, Sokal and Swart (2013): In such lattices there is a phase transition at positive temperature, with 3 pure states. The proof uses the asymmetry to define and exploit better the phase interface. Lattices from KSS paper

  61. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Positive temperature on Z d To implement the idea of Peled’s proof we require: • alternative for contours, • alternative for the transformation, • better method for using the entropy, • method to bound the in-degree of a coloring.

  62. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components.

  63. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  64. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  65. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 Phase 3 := odd 0 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  66. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 Phase 3 := odd 0 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 Phase 1 := odd 1 , even 2 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  67. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 Phase 3 := odd 0 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 Phase 1 := odd 1 , even 2 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 Phase 2 := odd 2 , even 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  68. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 Phase 3 := odd 0 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 Phase 1 := odd 1 , even 2 2 0 2 1 2 1 0 1 0 0 1 0 1 0 2 1 0 1 Phase 2 := odd 2 , even 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 The improper edges are 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 encoded by the phases. 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  69. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup A key definition in approaching positive temperature is that of a Breakup (w.r.t. to a vertex v 1 ), in lieu of Peled’s sublevel components. We start by defining four 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 phases for vertices: 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 Phase 0 := even 0 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 Phase 3 := odd 0 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 Phase 1 := odd 1 , even 2 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 Phase 2 := odd 2 , even 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 The improper edges are 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 encoded by the phases. 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  70. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup The first ingredient in our proof is a notion of a Breakup w.r.t. an odd vertex v 1 . This - in lieu of Peled’s sublevel components. We now repeatedly take 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 co-connected closures : 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 complement → conn. component → complement 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 2 0 2 0 1 2 1 2 2 0 2 0 2 0 1 2 1 2 0 1 0 1 1 2 1 0 1 0 1 1 2 1 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 2 2 0 2 1 2 2 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 2 0 2 1 2 0 1 0 0 1 2 0 2 1 2 0 1 0 0 1 0 1 0 2 2 1 2 1 2 1 2 0 1 0 2 2 1 2 1 2 1 2 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 2 0 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 2 0 2 0 1 2 1 2 2 0 2 0 2 0 1 2 1 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 0 1 0 1 1 2 1 0 1 0 1 1 2 1 2 0 2 1 2 2 2 0 2 1 2 2 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 2 0 2 1 2 0 1 0 0 1 2 0 2 1 2 0 1 0 0 1 0 1 0 2 2 1 2 1 2 1 2 0 1 0 2 2 1 2 1 2 1 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 2 0 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 1 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  71. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . We now repeatedly take 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 co-connected closures : 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 complement → conn. component → complement 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 2 0 2 0 1 2 1 2 2 0 2 0 2 0 1 2 1 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 0 1 0 1 1 2 1 0 1 0 1 1 2 1 2 0 2 1 2 2 2 0 2 1 2 2 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 2 0 2 1 2 0 1 0 0 1 2 0 2 1 2 0 1 0 0 1 0 1 0 2 2 1 2 1 2 1 2 0 1 0 2 2 1 2 1 2 1 2 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 2 0 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 1 2 1 2 2 0 2 0 2 0 1 2 1 2 0 1 0 1 1 2 1 0 1 0 1 1 2 1 2 0 2 1 2 2 2 0 2 1 2 2 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 2 0 2 1 2 0 1 0 0 1 2 0 2 1 2 0 1 0 0 1 0 1 0 2 2 1 2 1 2 1 2 0 1 0 2 2 1 2 1 2 1 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 2 0 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 2 2 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 1 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  72. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  73. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  74. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 Co-conn. 3 phase. 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  75. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 Co-conn. 3 phase. 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  76. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 Co-conn. 3 phase. 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 3 Co-conn. 1 phase. 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

  77. Introduction Kotecky Conjecture Zero-temperature Positive-temperature Approximations Breakup Phase definition reminder 0 : even 0 | 3 : odd 0 | 1 : odd 1 , even 2 | 2 : odd 2 , even 1 . 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Co-conn. 0 phase. 2 0 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 1 0 1 0 1 0 1 2 0 2 1 2 2 0 1 0 2 Co-conn. 3 phase. 2 0 2 0 1 2 1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 1 1 2 0 2 0 1 0 1 0 0 1 0 3 Co-conn. 1 phase. 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 2 1 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 1 0 2 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend