long
play

long range sand pile divisible Chiari L ni DELFT IM PA TU - - PowerPoint PPT Presentation

The long range sand pile divisible Chiari L ni DELFT IM PA TU - M j Jara W Ruszel w w . . . . , . MPA I DELFT TU EBP 2019 - = Zn% Toros G Discrete : 2nd Mass IR Dist of So - . holes ) ( or C. 7. .


  1. The long range sand pile divisible Chiari L ni DELFT IM PA TU - M j Jara W Ruszel w w . . . . , . MPA I DELFT TU EBP 2019 -

  2. = Zn% Toros G Discrete : 2nd Mass IR Dist of So - . holes ) ( or C. 7. .

  3. Deterministic of mass diffusion So ( x ) ( × . . .

  4. Deterministic of mass diffusion So ( x ) 5=1 ( × . . .

  5. Deterministic of mass - I 'T - ( Stx ) e C x ) Spread the excess - diffusion ¥ . ⇐ . f. × Z y

  6. Deterministic of mass - I 'T = ( Stx ) e C x ) Spread diffusion the excess . ) walk to of according ( x random Pn a , . elxlpfxit ) T F- → 5=1 ( × . . .

  7. Deterministic of mass - I 'T - ( Stx ) e C x ) Spread diffusion the excess - . ) walk to of according ( x random Pn a , . simultaneously ⇐ . ' - I → ⇒ ~ ← 5=1 ( × . . .

  8. We will consider PIX o ) , y ) Pn ( X - y , and = CCDI I Pnlo ,x ) = , 1/-2/11+4 ZE 219303 mod 2nd ) ZE ( X

  9. We will consider Const . . gNorm PIX Pn ( X. y ) - y ,o ) and = = ¥¥¥%.¥d÷ Pn " " ' IT ~ n my - . . . . . .

  10. The Odometer - IT x ) Eet ( s Uel ex , ; expelled total = mass t to time by x up . Sati fi es - ( " - A) I St so ut =

  11. The Odometer Cx ) yet - IT - x ) Et sjcx ( Uel , expelled total = mass t to time by x up . of pin Sati fines Generator - f " - A) I St so ut =

  12. Explosion Stabilisation vs = fins × ) MEH Moo l U ⇒ Explosion = Too { Fixation ⇒ uctoo

  13. : Ind - nd IR For 't ×Eso( x ) → s So - have that and We nooooo = finna Stu ) =L Soo .

  14. : Ind - nd IR For St ×E so ( x ) → So - have that and We nooooo Stu ) =L Soo =fih→oo . ① What if happens take we ⇐ txt )×e " " ? almost iid # nd

  15. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Id = - y¥±nddY

  16. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Fe FLY Id = - In which case ZU At Y' * C- x ) Sol " " I { mini = o = :c - - , . =

  17. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Id = - y¥±nddY In which case ee.ari.im :¥% iii. f. a , F Ufo I x ) O Yin =

  18. Then want to know we , of Elmo Asymptotic . ] the in I case . N 10,1 ) that on . field the un Scaling of 2. . ) Ink axlntz.I.fndwooln-IIBqz.IN = )

  19. Then want to know we , of Ecus Asymptotic . ] the in I case . N 10,1 ) that on . c- 1127323 min { 2,4 ) for nor %gn let f- a , > Iz dlz r r - , = OId.ly/=1ogn,8=d1z n E CUT ] " ) req , ( 15 ) Levine , Peres n . n : , Ugurcan can u - . , ' ) - range ( C Ruszel long Jara 18 - . . , ,

  20. Then want to know we , of Ecus Asymptotic . ] the in I case . N 10,1 ) that on . c- 1127323 min { 2,4 ) for nor %gn let f- a , > Iz dlz r r - , = OId.ly/=1ogn,8=d1z n E CUT ] " ) req , ( 15 ) Levine , Peres n . n : , Ugurcan can u - . , ' ) - range ( C Ruszel long Jara 18 - . . , ,

  21. EID " " Proof Chaining Tal Inequality agram ④ of Convergence Rate of eigenvalues

  22. . Scaling field the un of 2 . ) Ink adntz.I.fndunoln-ZIIB.cz = , In ) on :÷ .int a . . I Then In - the zr , ( FGF Fractional ) the G Field 28 - . 17 ) : ( Ruszel Hazra Cipriani . n n - , , - long ( C 18 ) - range Ruszel Jara . , - ,

  23. Coo ( IT ) f is all That for 't E s ↳ f dx=o Ear Hflhzr ) NCO , f I 7 ~ , with Htt .zr=¥z¥ttI÷ , tatty it = .

  24. EID " " Proof Tightness Sobolev Chebchev : + Finite dim t Eigenvalues Moment methods : convergence

  25. thanks

  26. EID " " Proof Tightness Sobolev Chebchev : + Finite dim t Eigenvalues Moment methods : convergence

  27. Coo ( IT ) f is all That for 't E s ↳ f dx=o Ear Hflhzr ) NCO , f ( 7 ~ , with Htt .zr=¥z¥ttI÷ ⇒ , tatty it I .

  28. . Scaling field the un of 2 . ) Ink adntz.I.fndunoln-ZIIB.cz = , In ) on :÷ .int a . . I Then In - the zr , ( FGF Fractional ) the G Field 28 - . 17 ) : ( Ruszel Hazra Cipriani . n n - , , - long ( C 18 ) - range Ruszel Jara . , - ,

  29. EID " " Proof Chaining Tal Inequality agram ④ of Convergence Rate of eigenvalues

  30. Then want to know we , of Ecus Asymptotic . ] the in I case . N 10,1 ) that on . c- 1127323 min { 2,4 ) for nor %gn let f- a , > Iz dlz r r - , = OId.ly/=1ogn,8=d1z n E CUT ] " ) req , ( 15 ) Levine , Peres n . n : , Ugurcan can u - . , ' ) - range ( C Ruszel long Jara 18 - . . , ,

  31. Then want to know we , of Ecus Asymptotic . ] the in I case . N 10,1 ) that on . c- 1127323 min { 2,4 ) for nor %gn let f- a , > Iz dlz r r - , = OId.ly/=1ogn,8=d1z n E CUT ] " ) req , ( 15 ) Levine , Peres n . n : , Ugurcan can u - . , ' ) - range ( C Ruszel long Jara 18 - . . , ,

  32. Then want to know we , of Elmo Asymptotic . ] the in I case . N 10,1 ) that on . field the un Scaling of 2. . ) Ink axlntz.I.fndwooln-IIBqz.IN = )

  33. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Id = - y¥±nddY In which case ee.ari.im :¥% iii. f. a , F Ufo I x ) O Yin =

  34. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Fe FLY Id = - In which case ZU At Y' * C- x ) Sol " " I { mini = o = :c - - , . =

  35. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Id = - y¥±nddY

  36. xD with Lol iid Let ? Var 0<+00 # nd , And set " ) ndocx ) So ( x ) ) = nasty with Cx ) > 0 s a. s .

  37. with iid Let ? (01×1) Var 0<+00 # nd , And set " ) ndocx ) So ( x ) EH ) = with Cx ) > 0 s a. s . sealing the is same

  38. xD with Lol Let ? Var o too a # nd , with normal and covariance And set ) six 1+9×1 I Id = - y¥±nddY

  39. with Let ? (01×1) Var 0<+00 # nd , with normal and covariance And set ) six 1=1+9×1 Id - y¥±nddY SRW pcx , y ) for ~ fields smother scaling gives but than FGG not 4 rougher - , Graff Ruszel 18 ) ( Cipriani de - , ,

  40. with iid Let ? (01×1) Var o too a # nd , And set ) six 1+9×1 I Id = - y¥±nddY

  41. Var€ xD with Lol iid Let # nd , tailed with heavy - P decay Hill And set ) six 1=1+9×1 Ia - Fe¥nddY SRW p( x. y ) for ~ results Scaling fields Gaussian in non - Hf 11.9 ) Efexp exp f ( i , 18 ) ( Cipriani Ruszel Hazra - , ,

  42. : Ind - nd IR For St ×E so ( x ) → So - have that and We nooooo Stu ) =L Soo =fih→oo . ① What if happens take we ⇐ txt )×e " " ? almost iid # nd

  43. ÷ :Esi÷÷:÷÷÷ ÷÷÷÷÷÷÷÷÷i÷÷ ① :

  44. : ÷÷÷÷÷÷÷÷÷s•÷i÷ ÷÷¥÷÷s:÷÷÷÷÷÷÷÷÷⇒ ①

  45. Thanks Again

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend