logica i e
play

Logica (I&E) najaar 2018 - PowerPoint PPT Presentation

Logica (I&E) najaar 2018 http://liacs.leidenuniv.nl/~vlietrvan1/logica/ Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl college 7, maandag 15 oktober 2018 1.5. Normal forms De punten moeten daar op de i gezet


  1. Logica (I&E) najaar 2018 http://liacs.leidenuniv.nl/~vlietrvan1/logica/ Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl college 7, maandag 15 oktober 2018 1.5. Normal forms De punten moeten daar op de i gezet worden, waar ze horen. 1

  2. 1.5. Normal forms Alternatives for deciding φ 1 , φ 2 , . . . , φ n � ψ 2

  3. 1.5.1. Semantic equivalence, satisfiability and validity Definition 1.40. Let φ and ψ be formulas of propositional logic. We say that φ and ψ are semantically equivalent iff φ � ψ and ψ � φ hold. In that case we write φ ≡ ψ . Further, we call φ valid if � φ holds, i.e., if φ is a tautology. 3

  4. A slide from lecture 4: 1.2.4 Provable equivalence Definition 1.25. Let φ and ψ be formulas of propositional logic. We say that φ and ψ are provably equivalent , if and only if the sequents φ ⊢ ψ and ψ ⊢ φ are valid; Notation: φ ⊣⊢ ψ 4

  5. Example. p → q ≡ ¬ q → ¬ p p → q ≡ ¬ p ∨ q p ∧ q → p ≡ r ∨ ¬ r p ∧ q → r ≡ p → ( q → r ) 5

  6. Lemma 1.41. Given formules φ 1 , φ 2 , . . . , φ n and ψ of proposi- tional logic, φ 1 , φ 2 , . . . , φ n � ψ holds iff � φ 1 → ( φ 2 → ( φ 3 → ( . . . ( φ n → ψ ) . . . ))) Proof. . . 6

  7. A slide from lecture 5: Step 1: If φ 1 , φ 2 , . . . , φ n � ψ is valid, then Step 1: � φ 1 → ( φ 2 → ( φ 3 → ( . . . ( φ n → ψ ) . . . ))) Step 2: ⊢ φ 1 → ( φ 2 → ( φ 3 → ( . . . ( φ n → ψ ) . . . ))) Step 3: φ 1 , φ 2 , . . . , φ n ⊢ ψ 7

  8. Conjunctive Normal Form Example. ( ¬ q ∨ p ∨ r ) ∧ ( ¬ p ∨ r ) ∧ q ( p ∨ r ) ∧ ( ¬ p ∨ r ) ∧ ( p ∨ ¬ r ) 8

  9. Example. ( ¬ q ∨ p ∨ r ) ∧ ( ¬ p ∨ r ) ∧ q ( p ∨ r ) ∧ ( ¬ p ∨ r ) ∧ ( p ∨ ¬ r ) Definition 1.42. A literal L is either an atom p or the negation of an atom: ¬ p . A formula C is in conjunctive normal form (CNF) if it is a conjunction of clauses, where each clause D is a disjunction of literals. 9

  10. Definition 1.42. A literal L is either an atom p or the negation of an atom: ¬ p . A formula C is in conjunctive normal form (CNF) if it is a conjunction of clauses, where each clause D is a disjunction of literals. ::= | D ∧ C C D ::= | L ∨ D D L ::= | ¬ p L p 10

  11. Is � ( ¬ q ∨ p ∨ r ) ∧ ( ¬ p ∨ r ) ∧ q valid? 11

  12. Is � ( ¬ q ∨ p ∨ r ) valid? 12

  13. Lemma 1.43. A disjunction of literals L 1 ∨ L 2 ∨ · · · ∨ L m is valid, iff there are 1 ≤ i, j ≤ m such that L i is ¬ L j . Proof. . . 13

  14. Lemma 1.43. A disjunction of literals L 1 ∨ L 2 ∨ · · · ∨ L m is valid, iff there are 1 ≤ i, j ≤ m such that L i is ¬ L j . Hence, a formula φ in CNF is valid, iff . . . 14

  15. Definition 1.44. Given a formula φ in propositional logic, we say that φ is satisfi- able if it has a valuation in which it evaluates to T. 15

  16. A slide from lecture 6a: 3.3. Consistentie Semantisch consistent Definitie 3.2. Een formuleverzameling Σ = { φ 1 , . . . , φ n } is (semantisch) consistent als Σ (minstens) een model heeft. We zeggen ook dat Σ vervulbaar is. Inconsistent 16

  17. Definition 1.44. Given a formula φ in propositional logic, we say that φ is satisfi- able if it has a valuation in which it evaluates to T. Proposition 1.45. Let φ be a formula of propositional logic. Then φ is satisfiable, iff ¬ φ is not valid. Proof. . . 17

  18. Constructing CNF from truth table Example. p q r φ T T T T T T F F T F T T T F F T F T T F F T F F F F T F F F F T 18

  19. 1.5.2. Conjunctive normal forms and va- lidity Transform φ into an equivalent formula ψ in CNF For each input φ , deterministic algorithm CNF (1) terminates, (2) outputs equivalent formula ψ (3) which is in CNF 19

  20. Step 1: Eliminate implications Use ψ → η ≡ ¬ ψ ∨ η (recursively) IMPL FREE ( r → ( s → ( t ∧ s → r )) ) 20

  21. Step 2: Negation normal form Use De Morgan: ¬ ( φ 1 ∧ φ 2 ) ≡ ¬ φ 1 ∨ � φ 2 ¬ ( φ 1 ∨ φ 2 ) ≡ ¬ φ 1 ∧ � φ 2 (recursively) NNF ( ¬ r ∨ ( ¬ s ∨ ( ¬ ( t ∧ s ) ∨ r )) ) 21

  22. Function NNF function NNF ( φ ) /* precondition: φ is implication free */ /* postcondition: NNF ( φ ) computes a NNF for φ */ begin function case φ is a literal: return φ φ is ¬¬ φ 1 : return NNF ( φ 1 ) φ is φ 1 ∧ φ 2 : return NNF ( φ 1 ) ∧ NNF ( φ 2 ) φ is φ 1 ∨ φ 2 : return NNF ( φ 1 ) ∨ NNF ( φ 2 ) φ is ¬ ( φ 1 ∧ φ 2 ): return NNF ( ¬ φ 1 ) ∨ NNF ( ¬ φ 2 ) φ is ¬ ( φ 1 ∨ φ 2 ): return NNF ( ¬ φ 1 ) ∧ NNF ( ¬ φ 2 ) end case end function 22

  23. Step 2: Negation normal form Use De Morgan: ¬ ( φ 1 ∧ φ 2 ) ≡ ¬ φ 1 ∨ � φ 2 ¬ ( φ 1 ∨ φ 2 ) ≡ ¬ φ 1 ∧ � φ 2 (recursively) Example. NNF ( ¬ ( ¬ p ∧ q ) ∨ ( p ∧ ( ¬ r ∨ q )) ) 23

  24. Step 3: CNF CNF ( p ) = . . . CNF ( ¬ p ) = . . . CNF ( φ 1 ∧ φ 2 ) = . . . CNF ( φ 1 ∨ φ 2 ) = . . . 24

  25. Step 3: CNF CNF ( p ) = p CNF ( ¬ p ) = ¬ p CNF ( φ 1 ∧ φ 2 ) = CNF ( φ 1 ) ∧ CNF ( φ 2 ) CNF ( φ 1 ∨ φ 2 ) = . . . Example. CNF ( φ 1 ) = ( p ∨ q ∨ r ) ∧ ( ¬ p ∨ p ∨ q ) CNF ( φ 2 ) = ( r ∨ ¬ q ) ∧ ( ¬ q ∨ ¬ r ∨ ¬ p ) 25

  26. Step 3: CNF CNF ( p ) = p CNF ( ¬ p ) = ¬ p CNF ( φ 1 ∧ φ 2 ) = CNF ( φ 1 ) ∧ CNF ( φ 2 ) CNF ( φ 1 ∨ φ 2 ) = DISTR ( CNF ( φ 1 ) , CNF ( φ 2 )) 26

  27. Step 3: CNF Use distributivity: ( η 11 ∧ η 12 ) ∨ η 2 ( η 11 ∨ η 2 ) ∧ ( η 12 ∨ η 2 ) ≡ η 1 ∨ ( η 21 ∧ η 22 ) ≡ ( η 1 ∨ η 21 ) ∧ ( η 1 ∨ η 22 ) (recursively) 27

  28. Use distributivity: ( η 11 ∧ η 12 ) ∨ η 2 ≡ ( η 11 ∨ η 2 ) ∧ ( η 12 ∨ η 2 ) η 1 ∨ ( η 21 ∧ η 22 ) ≡ ( η 1 ∨ η 21 ) ∧ ( η 1 ∨ η 22 ) (recursively) function DISTR ( η 1 , η 2 ) /* precondition: η 1 and η 2 are in CNF */ /* postcondition: DISTR ( η 1 , η 2 ) computes a CNF for η 1 ∨ η 2 */ begin function case η 1 is η 11 ∧ η 12 : return DISTR ( η 11 , η 2 ) ∧ DISTR ( η 12 , η 2 ) η 2 is η 21 ∧ η 22 : return DISTR ( η 1 , η 21 ) ∧ DISTR ( η 1 , η 22 ) otherwise (= no conjunctions): return η 1 ∨ η 2 end case end function 28

  29. function CNF ( φ ) /* precondition: φ implication free and in NNF */ /* postcondition: CNF ( φ ) computes an equivalent CNF for φ */ begin function case φ is a literal: return φ φ is φ 1 ∧ φ 2 : return CNF ( φ 1 ) ∧ CNF ( φ 2 ) φ is φ 1 ∨ φ 2 : return DISTR ( CNF ( φ 1 ) , CNF ( φ 2 )) end case end function Example. CNF ( ( p ∨ ¬ q ) ∨ ( p ∧ ( ¬ r ∨ q )) ) 29

  30. 1.5.3. Horn clauses and satisfiability Example. ( p ∧ q ∧ s → p ) ∧ ( q ∧ r → p ) ∧ ( p ∧ s → s ) 30

  31. 1.5.3. Horn clauses and satisfiability Example. ( p ∧ q ∧ s → p ) ∧ ( q ∧ r → p ) ∧ ( p ∧ s → s ) ( p 2 ∧ p 3 ∧ p 5 → p 13 ) ∧ ( ⊤ → p 5 ) ∧ ( p 5 ∧ p 11 → ⊥ ) 31

  32. Not Horn formulas ( p ∧ q ∧ s → ¬ p ) ∧ ( q ∧ r → p ) ∧ ( p ∧ s → s ) ( p 2 ∧ p 3 ∧ p 5 → p 13 ∧ p 27 ) ∧ ( ⊤ → p 5 ) ∧ ( p 5 ∧ p 11 ∨ ⊥ ) 32

  33. From CNF to Horn formula ( ¬ r ∨ ¬ p ) ∧ ( ¬ p ∨ q ∨ r ) 33

  34. From CNF to Horn formula ( ¬ r ∨ ¬ p ) ∧ ( ¬ p ∨ q ∨ r ) ∧ r 34

  35. Definition 1.46. A Horn formula is a formula φ of propositional logic that can be generated from H in this grammar: ::= | C ∧ H H C ::= A → P C ::= | P ∧ A A P ::= | ⊥ | ⊤ P p 35

  36. Deciding satisfiability for Horn formulas function HORN ( φ ) /* precondition: φ is a Horn formula */ /* postcondition: HORN ( φ ) decides the satisfiability for φ */ begin function mark all occurrences of ⊤ in φ while there is a conjunct P 1 ∧ P 2 ∧ · · · P k i → P ′ of φ such that all P j are marked but P ′ is not do mark P ′ end while if ⊥ is marked then return ‘unsatisfiable’ else return ‘satisfiable’ end function 36

  37. Exercise 1.5: 15. Apply algorithm HORN to each of these Horn formulas: (a) ( p ∧ q ∧ w → ⊥ ) ∧ ( t → ⊥ ) ∧ ( r → p ) ∧ ( ⊤ → r ) ∧ ( ⊤ → q ) ∧ ( u → s ) ∧ ( ⊤ → u ) 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend