logarithmic correlations in percolation and other
play

Logarithmic correlations in percolation and other geometrical - PowerPoint PPT Presentation

Logarithmic correlations in percolation and other geometrical critical phenomena Jesper L. Jacobsen 1 , 2 1 Laboratoire de Physique Thorique, cole Normale Suprieure, Paris 2 Universit Pierre et Marie Curie, Paris Statistical Mechanics,


  1. Logarithmic correlations in percolation and other geometrical critical phenomena Jesper L. Jacobsen 1 , 2 1 Laboratoire de Physique Théorique, École Normale Supérieure, Paris 2 Université Pierre et Marie Curie, Paris Statistical Mechanics, Integrability and Combinatorics, Galileo Galilei Institute, 26 June 2015 Collaborators: Romain Couvreur (ENS), Hubert Saleur (Saclay), Romain Vasseur (Berkeley) Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 1 / 26

  2. Introduction Logarithms in critical phenomeana Scale invariance ⇒ correlations are power-law or logarithmic Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 2 / 26

  3. Introduction Logarithms in critical phenomeana Scale invariance ⇒ correlations are power-law or logarithmic Two possibilities for logarithms: Marginally irrelevant operator: 1 Gives logs upon approach to fixed point theory. Dilatation operator not diagonalisable: 2 Logs directly in the fixed point theory. Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 2 / 26

  4. (2) Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 3 / 26

  5. (2) Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Cf. Frobenius method for solving second-order differential equations. When the two roots of the indicial equation collide, a log is produced in one solution. Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 3 / 26

  6. (2) Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Cf. Frobenius method for solving second-order differential equations. When the two roots of the indicial equation collide, a log is produced in one solution. Where do such logarithms appear? CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, . . . ] Percolation, self-avoiding polymers ( c → 0 catastrophe) Quenched random systems (replica limit catastrophe) Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur] For any d ≤ d uc , the upper critical dimension Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 3 / 26

  7. Logarithms and non-unitarity [Cardy 1999] Standard unitary CFT Expand local density Φ( r ) on sum of scaling operators ϕ ( r ) A ij � � Φ( r )Φ( 0 ) � ∼ r ∆ i +∆ j ij A ij ∝ δ ij by conformal symmetry [Polyakov 1970] A ii ≥ 0 by reflection positivity Hence only power laws appear Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 4 / 26

  8. Logarithms and non-unitarity [Cardy 1999] Standard unitary CFT Expand local density Φ( r ) on sum of scaling operators ϕ ( r ) A ij � � Φ( r )Φ( 0 ) � ∼ r ∆ i +∆ j ij A ij ∝ δ ij by conformal symmetry [Polyakov 1970] A ii ≥ 0 by reflection positivity Hence only power laws appear The non-unitary case Cancellations may occur Suppose A ii ∼ − A jj → ∞ with A ii (∆ i − ∆ j ) finite Then leading term is r − 2 ∆ i log r Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 4 / 26

  9. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Geometrical models Q -state Potts model Definition in terms of spins σ i = 1 , 2 , . . . , Q � � e K δ σ i ,σ j Z = { σ } ( ij ) ∈ E Reformulation in terms of Fortuin-Kasteleyn clusters � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆ E Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 5 / 26

  10. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Geometrical models Q -state Potts model Definition in terms of spins σ i = 1 , 2 , . . . , Q ( colours ) � � e K δ σ i ,σ j Z = { σ } ( ij ) ∈ E Reformulation in terms of Fortuin-Kasteleyn clusters ( black ) � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆ E Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 5 / 26

  11. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Geometrical models Q -state Potts model Definition in terms of spins σ i = 1 , 2 , . . . , Q ( colours ) � � e K δ σ i ,σ j Z = { σ } ( ij ) ∈ E Reformulation in terms of Fortuin-Kasteleyn clusters ( black ) � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆ E Here shown for Q = 3 The limit Q → 1 is percolation Surrounding loops ( grey ) satisfy the Temperley-Lieb algebra Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 5 / 26

  12. Logarithmic correlation functions for 2 ≤ d ≤ d uc Reminders 2 and 3-point functions in any d from global conformal invariance This is supposing only conformal invariance! Extra discrete symmetries must be taken into account as well Physical operators are irreducible under such symmetries [Cardy 1999] O( n ) symmetry for polymers ( n → 0) S n replica symmetry for systems with quenched disorder ( n → 0) Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 6 / 26

  13. Logarithmic correlation functions for 2 ≤ d ≤ d uc Reminders 2 and 3-point functions in any d from global conformal invariance This is supposing only conformal invariance! Extra discrete symmetries must be taken into account as well Physical operators are irreducible under such symmetries [Cardy 1999] O( n ) symmetry for polymers ( n → 0) S n replica symmetry for systems with quenched disorder ( n → 0) Correlators in bulk percolation in any dimension 2 and 3-point functions in bulk percolation Limit Q → 1 of Potts model with S Q symmetry Structure for any d ; but universal prefactors only for d = 2 Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 6 / 26

  14. Symmetry classification of operators N -spin operators irreducible under S Q and S N symmetries Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 7 / 26

  15. Symmetry classification of operators N -spin operators irreducible under S Q and S N symmetries Operators acting on one spin Most general one-spin operator: O ( r i ) ≡ O ( σ i ) = � Q a = 1 O a δ a ,σ i � � 1 δ a ,σ i − 1 δ a ,σ i = + Q Q ���� ���� � �� � reducible invariant ϕ a ( σ i ) Dimensions of representations: ( Q ) = ( 1 ) ⊕ ( Q − 1 ) Identity operator 1 = � a δ a ,σ i Order parameter ϕ a ( σ i ) satisfies the constraint � a ϕ a ( σ i ) = 0 Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 7 / 26

  16. Operators acting symmetrically on two spins Q × Q matrices O ( r i ) ≡ O ( σ i , σ j ) = � Q � Q b = 1 O ab δ a ,σ i δ b ,σ j a = 1 The Q operators with σ i = σ j decompose as before: ( 1 ) ⊕ ( Q − 1 ) � � Other Q ( Q − 1 ) Q ( Q − 3 ) operators with σ i � = σ j : ( 1 ) + ( Q − 1 ) + 2 2 Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 8 / 26

  17. Operators acting symmetrically on two spins Q × Q matrices O ( r i ) ≡ O ( σ i , σ j ) = � Q � Q b = 1 O ab δ a ,σ i δ b ,σ j a = 1 The Q operators with σ i = σ j decompose as before: ( 1 ) ⊕ ( Q − 1 ) � � Other Q ( Q − 1 ) Q ( Q − 3 ) operators with σ i � = σ j : ( 1 ) + ( Q − 1 ) + 2 2 Easy representation theory exercise E = δ σ i � = σ j = 1 − δ σ i ,σ j � � φ a = δ σ i � = σ j ϕ a ( σ i ) + ϕ a ( σ j ) 1 2 ˆ ψ ab = δ σ i , a δ σ j , b + δ σ i , b δ σ j , a − Q − 2 ( φ a + φ b ) − Q ( Q − 1 ) E Jesper L. Jacobsen (LPTENS) Logarithmic correlations GGI, 26 June 2015 8 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend