logarithmic correlations in geometrical critical phenomena
play

Logarithmic correlations in geometrical critical phenomena Jesper L. - PowerPoint PPT Presentation

Logarithmic correlations in geometrical critical phenomena Jesper L. Jacobsen 1 , 2 1 Laboratoire de Physique Thorique, cole Normale Suprieure, Paris 2 Universit Pierre et Marie Curie, Paris Mathematical Statistical Physics Yukawa


  1. Logarithmic correlations in geometrical critical phenomena Jesper L. Jacobsen 1 , 2 1 Laboratoire de Physique Théorique, École Normale Supérieure, Paris 2 Université Pierre et Marie Curie, Paris Mathematical Statistical Physics Yukawa Institute, Kyoto 3 August 2013 Collaborators: R. Vasseur, H. Saleur, A. Gaynutdinov Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 1 / 21

  2. Introduction Logarithms in critical phenomeana Scale invariance ⇒ correlations are power-law or logarithmic Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 2 / 21

  3. Introduction Logarithms in critical phenomeana Scale invariance ⇒ correlations are power-law or logarithmic Two possibilities for logarithms Marginally irrelevant operator: 1 Gives logs upon approach to fixed point theory. Dilatation operator not diagonalisable: 2 Logs directly in the fixed point theory. Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 2 / 21

  4. Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 3 / 21

  5. Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Where do such logarithms appear? CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, . . . ] Percolation, self-avoiding polymers ( c → 0 catastrophe) Quenched random systems (replica limit catastrophe) Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 3 / 21

  6. Non-diagonalisable dilatation operator Happens when dimensions of two operators collide Resonance phenomenon produces a log from two power laws Where do such logarithms appear? CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, . . . ] Percolation, self-avoiding polymers ( c → 0 catastrophe) Quenched random systems (replica limit catastrophe) Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur] For any d ≤ upper critical dimension Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 3 / 21

  7. Logarithms and non-unitarity [Cardy 1999] Standard unitary CFT Expand local density Φ( r ) on sum of scaling operators ϕ ( r ) A ij � � Φ( r )Φ( 0 ) � ∼ r ∆ i +∆ j ij A ij ∝ δ ij by conformal symmetry [Polyakov 1970] A ii ≥ 0 by reflection positivity Hence only power laws appear Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 4 / 21

  8. Logarithms and non-unitarity [Cardy 1999] Standard unitary CFT Expand local density Φ( r ) on sum of scaling operators ϕ ( r ) A ij � � Φ( r )Φ( 0 ) � ∼ r ∆ i +∆ j ij A ij ∝ δ ij by conformal symmetry [Polyakov 1970] A ii ≥ 0 by reflection positivity Hence only power laws appear The non-unitary case Cancellations may occur Suppose A ii ∼ − A jj → ∞ with A ii (∆ i − ∆ j ) finite Then leading term is r − 2 ∆ i log r Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 4 / 21

  9. Application to geometrical models Q -state Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Reformulation in terms of Fortuin-Kasteleyn clusters � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆� ij � Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 5 / 21

  10. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Application to geometrical models Q -state Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Reformulation in terms of Fortuin-Kasteleyn clusters ( black ) � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆� ij � Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 5 / 21

  11. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Application to geometrical models Q -state Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Reformulation in terms of Fortuin-Kasteleyn clusters ( black ) � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆� ij � Here shown for Q = 3 The limit Q → 1 is percolation Surrounding loops ( grey ) satisfy the Temperley-Lieb algebra Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 5 / 21

  12. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Application to geometrical models Q -state Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Reformulation in terms of Fortuin-Kasteleyn clusters ( black ) � Q k ( A ) ( e K − 1 ) | A | Z = A ⊆� ij � Here shown for Q = 3 The limit Q → 1 is percolation Surrounding loops ( grey ) satisfy the Temperley-Lieb algebra Continuum limit described by (L)CFT or SLE κ Critical exponent in two dimensions exactly computable Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 5 / 21

  13. Logarithmic correlations in percolation Reminders 2 and 3-point functions fixed in any d by global conformal invariance alone [Polyakov 1970] Extra discrete symmetries must be taken into account as well Physical operators are irreducible under such symmetries [Cardy 1999] O( n ) symmetry for polymers ( n → 0) S n replica symmetry for systems with quenched disorder ( n → 0) Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 6 / 21

  14. Logarithmic correlations in percolation Reminders 2 and 3-point functions fixed in any d by global conformal invariance alone [Polyakov 1970] Extra discrete symmetries must be taken into account as well Physical operators are irreducible under such symmetries [Cardy 1999] O( n ) symmetry for polymers ( n → 0) S n replica symmetry for systems with quenched disorder ( n → 0) Correlators in bulk percolation in any dimension Two and three-point functions in bulk percolation Limit Q → 1 of Potts model with S Q symmetry Structure for any d ; but universal prefactors only for d = 2 Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 6 / 21

  15. Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Operators must be irreducible under S Q symmetry [Cardy 1999] Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 7 / 21

  16. Potts model Hamiltonian H = J � � ij � δ ( σ i , σ j ) with σ i = 1 , 2 , . . . , Q Operators must be irreducible under S Q symmetry [Cardy 1999] Operators acting on one spin Most general one-spin operator: O ( r i ) ≡ O ( σ i ) = � Q a = 1 O a δ a ,σ i � � 1 δ a ,σ i − 1 δ a ,σ i = + Q Q ���� ���� reducible � �� � invariant ϕ a ( σ i ) Dimensions of representations: ( Q ) = ( 1 ) ⊕ ( Q − 1 ) Identity operator 1 = � a δ a ,σ i Order parameter ϕ a ( σ i ) satisfies the constraint � a ϕ a ( σ i ) = 0 Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 7 / 21

  17. Operators acting on two spins Q × Q matrices O ( r i ) ≡ O ( σ i , σ j ) = � Q � Q b = 1 O ab δ a ,σ i δ b ,σ j a = 1 The Q operators with σ i = σ j decompose as before: ( 1 ) ⊕ ( Q − 1 ) � � Other Q ( Q − 1 ) Q ( Q − 3 ) operators with σ i � = σ j : ( 1 ) + ( Q − 1 ) + 2 2 Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 8 / 21

  18. Operators acting on two spins Q × Q matrices O ( r i ) ≡ O ( σ i , σ j ) = � Q � Q b = 1 O ab δ a ,σ i δ b ,σ j a = 1 The Q operators with σ i = σ j decompose as before: ( 1 ) ⊕ ( Q − 1 ) � � Other Q ( Q − 1 ) Q ( Q − 3 ) operators with σ i � = σ j : ( 1 ) + ( Q − 1 ) + 2 2 Easy representation theory exercise E = δ σ i � = σ j = 1 − δ σ i ,σ j � � φ a = δ σ i � = σ j ϕ a ( σ i ) + ϕ a ( σ j ) 1 2 ˆ Q ( Q − 1 ) E ψ ab = δ σ i , a δ σ j , b + δ σ i , b δ σ j , a − Q − 2 ( φ a + φ b ) − Jesper L. Jacobsen (LPTENS) Logarithmic correlations MSP , Kyoto, 03/08/2013 8 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend