local cohomology with support in ideals of maximal minors
play

Local Cohomology with Support in Ideals of Maximal Minors and - PowerPoint PPT Presentation

Local Cohomology with Support in Ideals of Maximal Minors and subMaximal Pfaffians Claudiu Raicu , Jerzy Weyman, and Emily E. Witt Alba Iulia, June 2013 Overview CohenMacaulayness of modules of covariants 1 Local cohomology 2 Ext


  1. Local Cohomology with Support in Ideals of Maximal Minors and sub–Maximal Pfaffians Claudiu Raicu ∗ , Jerzy Weyman, and Emily E. Witt Alba Iulia, June 2013

  2. Overview Cohen–Macaulayness of modules of covariants 1 Local cohomology 2 Ext modules via the geometric technique and duality 3

  3. Modules of covariants Theorem (Hochster–Roberts ’74) Consider a reductive group H in characteristic zero, and a finite dimensional H–representation W. Write S = Sym ( W ) , and let S H be the ring of invariants with respect to the natural action of H on S. S H is a Cohen–Macaulay ring.

  4. Modules of covariants Theorem (Hochster–Roberts ’74) Consider a reductive group H in characteristic zero, and a finite dimensional H–representation W. Write S = Sym ( W ) , and let S H be the ring of invariants with respect to the natural action of H on S. S H is a Cohen–Macaulay ring. More generally, to any H –representation U we can associate the module of covariants ( S ⊗ U ) H . Question Which modules of covariants are Cohen–Macaulay? [Stanley ’82, Brion ’93, Van den Bergh ’90s.]

  5. Modules of covariants Theorem (Hochster–Roberts ’74) Consider a reductive group H in characteristic zero, and a finite dimensional H–representation W. Write S = Sym ( W ) , and let S H be the ring of invariants with respect to the natural action of H on S. S H is a Cohen–Macaulay ring. More generally, to any H –representation U we can associate the module of covariants ( S ⊗ U ) H . Question Which modules of covariants are Cohen–Macaulay? [Stanley ’82, Brion ’93, Van den Bergh ’90s.] For us: G finite dimensional vector space, dim ( G ) = n . H = SL ( G ) . W = G ⊕ m .

  6. Theorem on covariants of the special linear group S = Sym ( W ) = C [ x ij ] , where x ij are the entries of the generic matrix   · · · x 11 x 21 x m 1 . . . ...   . . . X =  . . . .  x 1 n x 2 n · · · x mn  C , m < n ;   S H = C [ n × n minors of X ] = C [ det ( X )] , m = n ;   more interesting , m > n .

  7. Theorem on covariants of the special linear group S = Sym ( W ) = C [ x ij ] , where x ij are the entries of the generic matrix   · · · x 11 x 21 x m 1 . . . ...   . . . X =  . . . .  x 1 n x 2 n · · · x mn  C , m < n ;   S H = C [ n × n minors of X ] = C [ det ( X )] , m = n ;   more interesting , m > n . Theorem (–WW ’13) If µ = ( µ 1 ≥ µ 2 ≥ · · · ≥ µ n = 0 ) is a partition and U = S µ G, then ( S ⊗ U ) H is Cohen–Macaulay if and only if µ s − µ s + 1 < m − n for all s = 1 , · · · , n − 1 .

  8. Theorem on covariants of the special linear group S = Sym ( W ) = C [ x ij ] , where x ij are the entries of the generic matrix   · · · x 11 x 21 x m 1 . . . ...   . . . X =  . . . .  x 1 n x 2 n · · · x mn  C , m < n ;   S H = C [ n × n minors of X ] = C [ det ( X )] , m = n ;   more interesting , m > n . Theorem (–WW ’13) If µ = ( µ 1 ≥ µ 2 ≥ · · · ≥ µ n = 0 ) is a partition and U = S µ G, then ( S ⊗ U ) H is Cohen–Macaulay if and only if µ s − µ s + 1 < m − n for all s = 1 , · · · , n − 1 . [B’93: m = n + 1; VdB’94: n = 2, arbitrary W ; VdB’99: n = 3.]

  9. Local cohomology If R is a ring, J = ( f 1 , · · · , f t ) an ideal, and M an R –module, we define the ˇ Cech complex C • ( M ; f 1 , · · · , f t ) by � � 0 − → M − → M f i − → M f i f j − → · · · − → M f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t

  10. Local cohomology If R is a ring, J = ( f 1 , · · · , f t ) an ideal, and M an R –module, we define the ˇ Cech complex C • ( M ; f 1 , · · · , f t ) by � � 0 − → M − → M f i − → M f i f j − → · · · − → M f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For j ≥ 0, the local cohomology modules H j J ( M ) are defined by H j J ( M ) = H j ( C • ( M ; f 1 , · · · , f t )) .

  11. Local cohomology If R is a ring, J = ( f 1 , · · · , f t ) an ideal, and M an R –module, we define the ˇ Cech complex C • ( M ; f 1 , · · · , f t ) by � � 0 − → M − → M f i − → M f i f j − → · · · − → M f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For j ≥ 0, the local cohomology modules H j J ( M ) are defined by H j J ( M ) = H j ( C • ( M ; f 1 , · · · , f t )) . If R is local or graded, with maximal ideal m , then M is said to be Cohen–Macaulay if H j m ( M ) = 0 for j < dim ( M ) .

  12. Local cohomology If R is a ring, J = ( f 1 , · · · , f t ) an ideal, and M an R –module, we define the ˇ Cech complex C • ( M ; f 1 , · · · , f t ) by � � 0 − → M − → M f i − → M f i f j − → · · · − → M f 1 ··· f t − → 0 . 1 ≤ i ≤ t 1 ≤ i < j ≤ t For j ≥ 0, the local cohomology modules H j J ( M ) are defined by H j J ( M ) = H j ( C • ( M ; f 1 , · · · , f t )) . If R is local or graded, with maximal ideal m , then M is said to be Cohen–Macaulay if H j m ( M ) = 0 for j < dim ( M ) . � m � , f 1 , · · · , f t are the maximal minors of X , R = S H , For us t = n m = ( f 1 , · · · , f t ) ⊂ R is the homogeneous maximal ideal. We have � ( S ⊗ U ) H � � � H H j H j = m S ( S ) ⊗ U . m

  13. Local cohomology and covariants Recall that H = SL ( G ) , W = G ⊕ m , S = Sym ( W ) , and X is the generic m × n matrix. We have S H = C [ maximal minors of X ] = C [ Grass ( n , m )] , so for every H –representation U , dim ( S H ) = dim ( S ⊗ U ) H = n · ( m − n ) + 1 .

  14. Local cohomology and covariants Recall that H = SL ( G ) , W = G ⊕ m , S = Sym ( W ) , and X is the generic m × n matrix. We have S H = C [ maximal minors of X ] = C [ Grass ( n , m )] , so for every H –representation U , dim ( S H ) = dim ( S ⊗ U ) H = n · ( m − n ) + 1 . Let I ⊂ S be the ideal generated by the maximal minors of X . It follows that ( S ⊗ U ) H is Cohen–Macaulay iff � � H H j I ( S ) ⊗ U = 0 , for 0 ≤ j ≤ n · ( m − n ) .

  15. Local cohomology and covariants Recall that H = SL ( G ) , W = G ⊕ m , S = Sym ( W ) , and X is the generic m × n matrix. We have S H = C [ maximal minors of X ] = C [ Grass ( n , m )] , so for every H –representation U , dim ( S H ) = dim ( S ⊗ U ) H = n · ( m − n ) + 1 . Let I ⊂ S be the ideal generated by the maximal minors of X . It follows that ( S ⊗ U ) H is Cohen–Macaulay iff � � H H j I ( S ) ⊗ U = 0 , for 0 ≤ j ≤ n · ( m − n ) . When U = S µ G is an irreducible H –representation, this is equivalent to saying that U ∗ = S ( µ 1 ,µ 1 − µ n − 1 , ··· ,µ 1 − µ 2 ) G doesn’t occur in the decomposition of H j I ( S ) into a sum of irreducible H –representations.

  16. Theorem on Maximal Minors Write G ⊕ m = F ⊗ G for an m –dimensional vector space F , so that S = Sym ( F ⊗ G ) . I is generated by � n F ⊗ � n G ⊂ Sym n ( F ⊗ G ) .

  17. Theorem on Maximal Minors Write G ⊕ m = F ⊗ G for an m –dimensional vector space F , so that S = Sym ( F ⊗ G ) . I is generated by � n F ⊗ � n G ⊂ Sym n ( F ⊗ G ) . Theorem (–WW ’13) For 1 ≤ s ≤ n and λ = ( λ 1 , · · · , λ n ) ∈ Z n a dominant weight, let λ ( s ) = ( λ 1 , · · · , λ n − s , − s , · · · , − s , λ n − s + 1 + ( m − n ) , · · · , λ n + ( m − n )) . � �� � m − n We let W ( r ; s ) denote the set of dominant weights λ ∈ Z n with | λ | = r and λ ( s ) ∈ Z m also dominant. We have the decomposition into a sum of GL ( F ) × GL ( G ) –representations �� λ ∈ W ( r ; s ) S λ ( s ) F ⊗ S λ G , if j = s · ( m − n ) + 1 , 1 ≤ s ≤ n ; H j I ( S ) r = 0 , otherwise .

  18. Weights of local cohomology for maximal minors Take m = 11, n = 9, s = 4, λ = ( 4 , 2 , 1 , − 2 , − 3 , − 6 , − 8 , − 8 , − 10 ) . We have m − n = 2 and λ ( s ) = ( λ 1 , · · · , λ n − s , − s , · · · , − s , λ n − s + 1 + ( m − n ) , · · · , λ n + ( m − n )) � �� � m − n = ( 4 , 2 , 1 , − 2 , − 3 , − 4 , − 4 , − 4 , − 6 , − 6 , − 8 ) .

  19. Weights of local cohomology for maximal minors Take m = 11, n = 9, s = 4, λ = ( 4 , 2 , 1 , − 2 , − 3 , − 6 , − 8 , − 8 , − 10 ) . We have m − n = 2 and λ ( s ) = ( λ 1 , · · · , λ n − s , − s , · · · , − s , λ n − s + 1 + ( m − n ) , · · · , λ n + ( m − n )) � �� � m − n = ( 4 , 2 , 1 , − 2 , − 3 , − 4 , − 4 , − 4 , − 6 , − 6 , − 8 ) . The local cohomology module H 9 I ( S ) contains in degree r = | λ | = − 30 the irreducible representation                       F ⊗ G                    

  20. Theorem on sub–Maximal Pfaffians dim ( F ) = 2 n + 1, W = � 2 F , and S = Sym ( W ) . Let I be the ideal generated by � 2 n F ⊂ Sym n �� 2 F � (the 2 n × 2 n –Pfaffians of the generic ( 2 n + 1 ) × ( 2 n + 1 ) skew–symmetric matrix).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend