small maximal spaces of non invertible matrices
play

Small maximal spaces of non-invertible matrices Jan Draisma - PowerPoint PPT Presentation

Small maximal spaces of non-invertible matrices Jan Draisma jan.draisma@unibas.ch Mathematisches Institut der Universit at Basel Trento 2005 p.1/7 Setting A : vector space of n n matrices over C Trento 2005 p.2/7 Setting A :


  1. Small maximal spaces of non-invertible matrices Jan Draisma jan.draisma@unibas.ch Mathematisches Institut der Universit¨ at Basel Trento 2005 – p.1/7

  2. Setting A : vector space of n × n matrices over C Trento 2005 – p.2/7

  3. Setting A : vector space of n × n matrices over C Rank-critical: rk( A ) = r and rk( A + C B ) > r for all B �∈ A Trento 2005 – p.2/7

  4. Setting A : vector space of n × n matrices over C Rank-critical: rk( A ) = r and rk( A + C B ) > r for all B �∈ A Question: how small can dim( A ) be? Trento 2005 – p.2/7

  5. Setting A : vector space of n × n matrices over C Rank-critical: rk( A ) = r and rk( A + C B ) > r for all B �∈ A Question: how small can dim( A ) be? Special case: r = n − 1 , maximal singular space Trento 2005 – p.2/7

  6. Examples 1. U, V ⊆ C n with dim U = k, dim V = k − ( n − r ) and A = { M | MU ⊆ V } ‘compression space’ Trento 2005 – p.3/7

  7. Examples 1. U, V ⊆ C n with dim U = k, dim V = k − ( n − r ) and A = { M | MU ⊆ V } ‘compression space’ 2. n odd, r = n − 1 , A = { skew-symmetric matrices } Trento 2005 – p.3/7

  8. Examples 1. U, V ⊆ C n with dim U = k, dim V = k − ( n − r ) and A = { M | MU ⊆ V } ‘compression space’ 2. n odd, r = n − 1 , A = { skew-symmetric matrices } 3. r = n − 1 , A 1 , . . . , A n generic skew-symmetric matrices and A = { ( A 1 x | . . . | A n x ) | x ∈ C n } (Bob Paré) Trento 2005 – p.3/7

  9. Examples 1. U, V ⊆ C n with dim U = k, dim V = k − ( n − r ) and A = { M | MU ⊆ V } ‘compression space’ 2. n odd, r = n − 1 , A = { skew-symmetric matrices } 3. r = n − 1 , A 1 , . . . , A n generic skew-symmetric matrices and A = { ( A 1 x | . . . | A n x ) | x ∈ C n } (Bob Paré) 4. ∃ many sufficient conditions for a matrix space A to be contained in a compression space: dim A large enough, A spanned by rank one matrices, r = 1 , 2 , 3 while n large, etc. (Fillmore, Laurie, and Radjavi; Dieudonné; Eisenbud-Harris; Lovász) Trento 2005 – p.3/7

  10. A sufficient condition for rank-criticality Setting: A a matrix space, rk( A ) = r Goal: decide whether A is rank-critical Theoretically: Groebner basis computations. Not feasible! Trento 2005 – p.4/7

  11. A sufficient condition for rank-criticality Setting: A a matrix space, rk( A ) = r Goal: decide whether A is rank-critical Notation: X r ⊆ M n the variety of rank ≤ r matrices Note: if rk( A + C B ) = r , then B ∈ T A X r for all A ∈ A Trento 2005 – p.4/7

  12. A sufficient condition for rank-criticality Setting: A a matrix space, rk( A ) = r Goal: decide whether A is rank-critical Notation: X r ⊆ M n the variety of rank ≤ r matrices Note: if rk( A + C B ) = r , then B ∈ T A X r for all A ∈ A Define: RND( A ) := � A ∈A T A X r , rank-neutral directions of A Conclusion: if RND( A ) = A , then A is rank-critical Trento 2005 – p.4/7

  13. Where do Lie-algebras come into play? Setting: G an algebraic group, ρ : G → GL( V ) a representation, g the Lie algebra of G Set: A := ρ ( g ) ⊆ End( V ) Trento 2005 – p.5/7

  14. Where do Lie-algebras come into play? Setting: G an algebraic group, ρ : G → GL( V ) a representation, g the Lie algebra of G Set: A := ρ ( g ) ⊆ End( V ) Observe: RND( A ) is a G -submodule of End( V ) Trento 2005 – p.5/7

  15. Where do Lie-algebras come into play? Setting: G an algebraic group, ρ : G → GL( V ) a representation, g the Lie algebra of G Set: A := ρ ( g ) ⊆ End( V ) Observe: RND( A ) is a G -submodule of End( V ) Conclusion: decomposition of End( V ) into irreducible G -modules can be used for proving that ρ ( g ) is rank-critical Implementation: in GAP , using Willem de Graaf’s Lie algebra algorithms Trento 2005 – p.5/7

  16. Two results Small maximal singular spaces: G := SL m , m ≥ 3 acting on V := homogeneous polynomials of degree me, e ≥ 1 yields a ( m 2 − 1) -dimensional maximal space of singular n × n -matrices, where n = dim V . Trento 2005 – p.6/7

  17. Two results Small maximal singular spaces: G := SL m , m ≥ 3 acting on V := homogeneous polynomials of degree me, e ≥ 1 yields a ( m 2 − 1) -dimensional maximal space of singular n × n -matrices, where n = dim V . Adjoint representation: for any semisimple g , ad( g ) ⊆ End( g ) is rank-critical of rank dim g − rk g . In fact: linear equations ‘cutting out’ ad( g ) in End( g ) : A ∈ End( g ) lies in ad( g ) if and only if A maps every Cartan h into � α ∈ h ∗ \{ 0 } g α . Trento 2005 – p.6/7

  18. See you in Basel!? R W C A 2 0 0 6 Rhine Workshop on Computer Algebra, 16-17 March 2006, Basel Contact: jan.draisma@unibas.ch URL: http://www.math.unibas.ch/ draisma/rwca06/ Trento 2005 – p.7/7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend